zaeto.ru

Б назовите несколько чисел, являющихся элементами для каждого множества

Другое
Экономика
Финансы
Маркетинг
Астрономия
География
Туризм
Биология
История
Информатика
Культура
Математика
Физика
Философия
Химия
Банк
Право
Военное дело
Бухгалтерия
Журналистика
Спорт
Психология
Литература
Музыка
Медицина
добавить свой файл
 

 
страница 1



Дистанционная математическая школа

Код курса М 4


9-10 классы

Модуль 1: Основы теории множеств


. . .
Задание 1.

А) Объясните, из каких элементов состоят множества N, Z, Q, R.

Б) Назовите несколько чисел, являющихся элементами для каждого множества.

В) Назовите числа, которые являются элементами одного из множеств, и не являются элементами остальных трех.

Г) Нарисуйте диаграмму, показывающую взаимосвязь этих множеств между собой.

Ответ.

В) Такие элементы есть только во множестве R. Например, R , но N, Z, Q. Элементы любого из множеств N, Z, Q обязательно входят и в множество R.

Г

Nмножество натуральных чисел;
Zмножество целых чисел;
Qмножество рациональных чисел;

Rмножество действительных чисел.
)
Учителю. Рассматривая материал, мы не выходим за множество действительных чисел.
Задание 2. Задайте множество:

А) учителей математики Вашей школы;

Б) нечетных чисел;

В) корней уравнения х2 + 5 = 0;

Г) решений неравенства х > 4;

Ответ: Б) {хх = 2n - 1; n Z };

В) ;


Г) (4; +).

Учителю. При необходимости можно повторить запись числовых множеств решений неравенств разного вида (приложение «Таблица»).
Равные множества. Множества, состоящие из одних и тех же элементов, считают равными.

Например, А = {1, 2, 3}; В ={ х (х - 1)(х - 2)(х - 3) = 0 }. А = В.

Отношение равенства для множеств, как и отношение равенства для чисел, обладает свойствами рефлексивности, симметричности и транзитивности.

То есть, для любых множеств А и В справедливо:



  • А = А (рефлексивность);

  • Если А = В, то В = А (симметричность);

  • Если А = В и В = С, то А = С (транзитивность).


Мощность множества. Для множества, имеющего конечное число элементов, мощностью называется количество его элементов.

А = {а; b; c; d}. Его мощность: А= 4.

Если два множества имеют одинаковую мощность, говорят, что они равномощны. Множество А равномощно множеству времен года.


Интересно, что сначала человек научился сравнивать множества по количеству элементов, а позднее – считать предметы. Сравнить два множества по количеству элементов можно так: каждому элементу одного множества ставить в соответствие элемент второго. Если все элементы «встанут» по парам, то множества равномощны. Если же при сопоставлении некоторые элементы одного из множеств останутся без пары, то оно содержит больше элементов.

Все конечные множества можно мысленно рассортировать, относя в один и тот же класс все множества с одинаковым количеством элементов. И каждому классу поставить в соответствие как характеристику этого множества некоторое число. Таким образом, натуральное число 1 - это общая характеристика всех множеств, имеющих один элемент, натуральное число 5 - это общая характеристика всех множеств, имеющих пять элементов.

Взаимно-однозначное соответствие можно установить и для бесконечных множеств. Например, запишем в один ряд все натуральные числа, а в другой – все четные, элемент под элементом.

1 2 3 4 5 6 7 8 9 10 11 12 . . .

2 4 6 8 10 12 14 16 18 20 22 24 . . .
Мы видим, что все числа первого множества имеют однозначно определенную пару во втором множестве и наоборот. То есть множество натуральных чисел имеет столько же элементов, сколько и множество натуральных четных. То есть они равномощны.

Множества, равномощные множеству натуральных чисел N, называются счетными. Интересно, что счетным является, например, множество положительных рациональных чисел.

Мощность множества всех действительных чисел называется мощностью континуума. Мощность континуум имеют также все множества, равномощные интервалу (0,1). Таким образом, множество всех действительных чисел равномощно интервалу (0,1).
Отношение равномощности также обладает свойствами рефлексивности, симметричности и транзитивности.

То есть, для любых множеств А и В справедливо:



  • А = А

  • Если А = В, то В = А;

  • Если А = В и В = С, то А = С .


Задание 3. Найдите мощность множеств:

А) Т - множество трехзначных натуральных чисел;

Б) К – множество граней куба;

В) Р – множество натуральных чисел, кратных 7.

Г) Приведите примеры множеств, равномощных каждому из п. А-В.

Ответ: А) Т= 900; Б) К= 6; В) множество К – счетное.
Учителю. Проговорите с учащимися о различии понятий равенство множеств и равномощность множеств.

Задание 4. А – множество букв слова «КОЛЬЦО», В – множество букв слова «ЦОКОЛЬ», С -

множество букв слова «УЛИЦА». Укажите равные и равномощные множества.


Ответ: А = {К, О, Л, Ь, Ц}, В = {Ц, О, К, Л, Ь}, С = {У, Л, И, Ц, А}. Мощность всех трех множеств равна 5, значит, они равномощны.

А=В.



Материалы разработаны методистами Новосибирского центра продуктивного обучения


страница 1


Смотрите также:





     

скачать файл




 



 

 
 

 

 
   E-mail:
   © zaeto.ru, 2020