zaeto.ru

Принципы построения и архитектура ЭВМ история развития компьютеров – 2ч

Другое
Экономика
Финансы
Маркетинг
Астрономия
География
Туризм
Биология
История
Информатика
Культура
Математика
Физика
Философия
Химия
Банк
Право
Военное дело
Бухгалтерия
Журналистика
Спорт
Психология
Литература
Музыка
Медицина
добавить свой файл
 

 
страница 1 ... страница 2 страница 3 страница 4


Компоненты ПЭВМ. Центральные устройства ЭВМ, внешние устройства ЭВМ, управление устройствами. – 6 часов


Основные составные части типичного персонального компьютера: 1 — Монитор, 2 — Материнская плата, 3 — Центральный процессор, 4 — Оперативная память, 5 — Карты расширений, 6 — Блок питания, 7 — Оптический привод, 8 — Жесткий диск, 9 — Компьютерная мышь, 10 — Клавиатура


Центральные устройства ЭВМ

Материнка


Матери́нская пла́та (англ. motherboard, MB, также используется название англ. mainboard — главная плата; сленг. мама, мать, материнка) — это сложная многослойная печатная плата, на которой устанавливаются основные компоненты персонального компьютера.

Материнская плата содержит разъёмы (слоты) для подключения дополнительных контроллеров.


Основные компоненты, установленные на материнской плате:

  • Центральный процессор.

  • набор системной логики (англ. chipset) — набор микросхем, обеспечивающих подключение ЦПУ к ОЗУ и контроллерам периферийных устройств.

  • ОЗУ (Оперативная память)

  • загрузочное ПЗУ — хранит ПО, которое исполняется сразу после включения питания. Как правило, загрузочное ПЗУ содержит BIOS, однако может содержать и ПО (нар., интеропретатор Бейсика в первых версиях IBM PC).

  • контроллеры базовых интерфейсов ввода-вывода

Форм-фактор материнской платы — стандарт, определяющий размеры материнской платы для персонального компьютера, места ее крепления к корпусу; расположение на ней интерфейсов шин, портов ввода/вывода, сокета центрального процессора (если он есть) и слотов для оперативной памяти, а также тип разъема для подключения блока питания.


Форм-фактор (как и любые другие стандарты) носит рекомендательный характер. Спецификация форм-фактора определяет обязательные и опциональные компоненты. Однако подавляющее большинство производителей предпочитают соблюдать спецификацию, поскольку ценой соответствия существующим стандартам является совместимость материнской платы и стандартизированного оборудования (периферии, карт расширения) других производителей.

Устаревшие: Baby-AT; Mini-ATX; полноразмерная плата AT; LPX.

Современные: АТХ; microATX; Flex-АТХ; NLX; WTX, CEB.

Внедряемые: Mini-ITX и Nano-ITX; Pico-ITX; BTX, MicroBTX и PicoBTX


Существуют материнские платы, не соответствующие никаким из существующих форм-факторов (см. таблицу). Обычно это обусловлено либо тем, что производимый компьютер узкоспециализирован, либо желанием производителя материнской платы самостоятельно производить и периферийные устройства к ней, либо невозможностью использования стандартных компонентов (так называемый «бренд», например Apple Computer, Commodore, Silicon Graphics, Hewlett Packard, Compaq чаще других игнорировали стандарты; кроме того в нынешнем виде распределённый рынок производства сформировался только к 1987 году, когда многие производители уже создали собственные платформы).



Форм-фактор

Размеры, мм

Спецификация, год

Примечание

XT

216 × 279

IBM, 1983

архитектура IBM PC XT

AT

305 × 279/330

IBM, 1984

архитектура IBM PC AT (Desktop/Tower)

Baby-AT

216 × 254/330

IBM, 1990

архитектура IBM PC XT (форм-фактор считается недействительным с 1996 года.)

ATX

305 × 244

Intel, 1995

для системных блоков типов MiniTower, FullTower

ATX Riser




Intel, 1999

для системных блоков типа Slim

microATX

244 × 244

Intel, 1997

имеет меньше слотов, чем ATX, также возможно использование меньшего PSU

LPX

229 × 279/330

Western Digital, 1987

для системных блоков типа Slim

Mini-LPX

203/229 × 254/279

Western Digital, 1987

для системных блоков типа Slim

NLX

203/229 × 254/345

Intel, 1997

предусмотрен AGP, лучшее охлаждение чем у LPX

FlexATX

244 × 190,5/244

Intel, 1999

разработан как замена для форм-фактора MicroATX

WTX

355,6 × 425,4

1999

для высокопроизводительных рабочих станций и серверов среднего уровня

Mini-ITX

170 × 170

VIA Technologies, 2003

допускаются только 100 Вт блоки питания

Nano-ITX

120 × 120

VIA Technologies, 2004




BTX

325 × 267

Intel, 2004

допускается до 7 слотов и 10 отверстий для монтажа платы

MicroBTX

264 × 267

Intel, 2004

допускается до 4 слотов и 7 отверстий для монтажа платы

PicoBTX

203 × 267

Intel, 2004

допускается 1 слот и 4 отверстия для монтажа платы

ETX и PC-104







используются для встраиваемых систем

CEB

305 × 267

2005

для высокопроизводительных рабочих станций и серверов среднего уровня

Pico-ITX

100 х 72

VIA, 2007

используются в ультракомпактных встраиваемых системах

SSI CEB

305 x 259

???

обычно служат для построения серверов. Разъемы для подключения блока питания имеют 24+8 контактов.

Наиболее известными производителями материнских плат на российском рынке в настоящее время являются фирмы Asus, Gigabyte, MSI, Intel, Elitegroup, AsRock. Ранее большой известностью пользовались платы фирм Abit и Epox. На сегодня обе фирмы прекратили выпуск материнских плат. Из российских производителей материнских плат можно упомянуть только компанию Формоза, которая производила платы, используя компоненты фирм Lucky Star и Albatron. Из украинских — корпорацию «Квазар-Микро».

Процессор

Архитектура набора команд

Архитектура набора команд (англ. instruction set architecture, ISA) — часть архитектуры компьютера, определяющая программируемую часть ядра микропроцессора. На этом уровне определяются реализованные в микропроцессоре конкретного типа:

  • архитектура памяти,

  • взаимодействие с внешними устройствами ввода/ вывода,

  • режимы адресации,

  • регистры,

  • машинные команды,

  • различные типы внутренних данных (например, с плавающей запятой, целочисленные типы и т . д.),

обработчики прерываний и исключительных состояний.

Схема, иллюстрирующая место уровней


микроархитектуры,
архитектуры набора команд и
микрокода
в многоуровневой структуре компьютера

Микроархитектура описывает модель, топологию и реализацию ISA на микросхеме микропроцессора. На этом уровне определяется:



  • конструкция и взаимосвязь основных блоков ЦП,

  • структура ядер, исполнительных устройств, АЛУ, а также их взаимодействия,

  • блоков предсказания переходов,

  • организация конвейеров,

  • организация кэш-памяти,

  • взаимодействие с внешними устройствами.

В рамках одного семейства микропроцессоров, микроархитектура со временем расширяется путем добавления новых усовершенствований и оптимизации существующих команд с целью повышения производительности, энергосбережения и функциональных возможностей микропроцессора. При этом сохраняется совместимость с предыдущей версией ISA.



Процессоры X86

x86 (англ. Intel 80x86) — архитектура процессора c одноименным набором команд, впервые реализованная в процессорах компании Intel. Название образованно от двух цифр, которыми заканчивались названия процессоров Intel ранних моделей — 8086, 80186, 80286 (i286), 80386 (i386), 80486 (i486). За время своего существования набор команд постоянно расширялся, сохраняя совместимость с предыдущими поколениями. Помимо Intel, архитектура также была реализована в процессорах других производителей: AMD, VIA, Transmeta, WinChip и др. В настоящее время для этой архитектуры существует еще одно название — IA-32 (Intel Architecture — 32).

x86 — это CISC-архитектура.


Сегментная организация памяти

Реальный режим (real mode)

Классический режим адресации, использованный в первых моделях семейства. Использует сегментированную модель памяти, организованную следующим образом: адресное пространство в 1MiB разбивается на 16-байтовые блоки, называемые параграфами. Всего параграфов в 1 MiB — 65536, что позволяет пронумеровать их 16-разрядными числами. Сегменты памяти имеют размер 65536 байт, и всегда начинаются на границе параграфа. Адрес ячейки памяти состоит из двух частей: номера параграфа, с которого начинается сегмент и смещения внутри сегмента и обычно записывается как SSSS:OOOO, где S и O — шестнадцатеричные цифры. SSSS называется сегментной компонентой адреса, а OOOO — смещением.

Общий объем памяти, адресуемый в реальном режиме составляет 1048576 байт (0000:0000-F000:FFFF(00000-FFFFF)-логический адрес(физический адрес) в шестнадцатеричной системе счисления). Сегментный подход позволяет разделить всю память на 16 сегментов, начинающихся с адресов, кратных 64 Кбайт. Эти 16 сегментов называют страницами памяти.

Обычно деление на страницы используется для совместного функционирования устройств, интерфейсы которых отображены на адресное пространство памяти; тогда каждое такое устройство использует одну страницу памяти, и адрес ячейки в адресном пространстве устройства будет совпадать со смещением в сегменте памяти компьютера. Так в компьютерах IBM PC страницы c 11 по 15 используются как «видеопамять» (адресное пространство видеоадаптера), а 16-я страница (FFFF:0000 — FFFF:FFFF) получила название «области верхней памяти» (High Memory Area), которую впоследствии MS-DOS использовала для размещения своего ядра и буферов ввода-вывода, оставив больше «обычной» памяти прикладным программам. Таким образом реально доступная пользователю память составляет 640 Кбайт (первые 10 страниц).

В реальном режиме отсутствует защита памяти и разграничение прав доступа, поэтому он уже практически вышел из употребления. Является режимом по умолчанию для всех моделей процессоров семейства x86.

Защищённый режим (protected mode)

Более совершенный режим, впервые появившийся в процессоре 80286 и в дальнейшем многократно улучшавшийся. Имеет большое количество подрежимов, по которым можно проследить эволюцию семейства ЦП. В этом режиме поддерживается защита памяти, контексты задач и средства для организации виртуальной памяти. Аналогично реальному режиму, тут также используется сегментированная модель памяти, однако уже организованная по другому принципу: деление на параграфы отсутствует, а расположение сегментов описывается специальными структурами (таблицами дескрипторов), расположенными в оперативной памяти. Помимо базового адреса сегмента дескрипторы содержат размер сегмента (точнее, максимально доступное смещение) и различные атрибуты сегментов, использующиеся для защиты памяти и определения прав доступа к сегменту для различных программных модулей. Существует два типа дескрипторных таблиц: глобальная и локальная. Глобальная таблица описывает сегменты операционной системы и разделяемых структур данных. Локальная таблица может быть определена для каждой конкретной задачи (процесса). Сегменты памяти также выбираются все теми же сегментными регистрами; однако вместо номера параграфа сегментный регистр содержит специальную структуру (селектор), содержащую индекс дескриптора в таблице. Сам же дескриптор загружается из памяти во внутренний программно недоступный регистр (кеш), привязанный к каждому сегментному регистру и автоматически загружаемый в момент его модификации.

Каждый программный модуль, выполняемый в защищенном режиме определяется его сегментом кода, описываемым регистром CS, который и определяет его привилегии по доступу к данным и другим модулям. Существует 4 уровня привилегий 0,1,2 и 3, называемых кольцами защиты. Кольцо 0 наиболее привилегированное. Оно предназначено для модулей ядра операционной системы. Кольцо 3 — наименее привилегированное, и предназначено для пользовательских программ. Кольца 1 и 2 используются лишь некоторыми операционными системами. Сегменты данных также имеют атрибуты прав доступа, дающие доступ только коду, имеющему такие же или более высокие привилегии. Система колец позволяет гибко распределять доступ к коду и данным.

Процессор 80386, появившийся в 1985 году, в отличие от своих предшественников стал 32-битным. В нем появилась возможность адресовать до 4GiB памяти, что позволило создавать сегменты памяти размером во все адресное пространство. Поэтому новые операционные системы использовали вырожденную модель организации памяти, когда все сегменты начинаются с нулевого адреса. Такая модель получила название плоской (flat memory model), и адрес задается одним целым 32-разрядным числом (хотя, по сути, он является смещением внутри вырожденного сегмента), а сами сегменты используются исключительно для организации защиты по кольцам привилегий.


Страничная организация памяти
В процессорах начиная с 80386 появилось следущее. Используя трансляцию страниц, операционная система может создать собственное линейное адресное пространство для каждого процесса; также каждая страница имеет атрибуты прав доступа. Только в отличие от сегментов, таких уровней существует только 2: пользователь и супервизор. Но для большинства современных операционных систем этого вполне достаточно. Следует отметить, что страничная орг-я памяти доступно только в защищенном режиме.

Расширения

PAE В более поздних 32-разрядных процессорах (начиная с Pentium Pro) появилось PAE (Physical Address Extension) — расширение адресов физической памяти до 36 бит (возможность адресации 64 Гбайт ОЗУ). Это изменение не затронуло разрядности задач — они остались 32-битными.

MMX Дополнительный «мультимедийный» (англ. Multi-Media eXtensions) набор инструкций, выполняющих по несколько характерных для процессов кодирования/декодирования потоковых аудио/видеоданных действий за одну машинную инструкцию. Впервые появился в процессорах Pentium MMX. Обеспечивает только целочисленные вычисления.

SSE (англ. Streaming SIMD Extensions — потоковое SIMD-расширение) — это SIMD (англ. Single Instruction, Multiple Data — «одна инструкция — множество данных») набор инструкций, разработанный Intel и впервые представленный в процессорах серии Pentium III. Поддерживает вычисления с плавающей точкой. SSE состоит из восьми 128-битных регистров (с xmm0 до xmm7). Каждый регистр определяет 4 последовательных значения с плавающей точкой одинарной точности. SSE включает в себя инструкции, которые производят операции со скалярными и упакованными типами данных.

SSE2 Улучшенное расширение SSE. Появилось в процессорах Pentium 4. Производит потоковые вычисления с вещественными числами двойной точности (2 числа по 64 бита в одном регистре SSE). Кроме того, добавлены инструкции, аналогичные расширению MMX, работающие с регистрами SSE (16 байт, 8 слов, 4 двойных слова или 2 учетверённых слова в одном регистре). SSE2 включает в себя ряд команд управления кэшем, предназначенных для минимизации загрязнения кэша при обработке неопределенных потоков информации.

SSE3 Продолжение SSE и SSE2, появилось в процессорах Prescott. Набор SSE3 содержит 13 инструкций: FISTTP (x87), MOVSLDUP (SSE), MOVSHDUP (SSE), MOVDDUP (SSE2), LDDQU (SSE/SSE2), ADDSUBPD (SSE), ADDSUBPD (SSE2), HADDPS (SSE), HSUBPS (SSE), HADDPD (SSE2), HSUBPD (SSE2), MONITOR (нет аналога в SSE3 для AMD), MWAIT (нет аналога в SSE3 для AMD). Наиболее заметное изменение — возможность горизонтальной работы с регистрами. Если говорить более конкретно, добавлены команды сложения и вычитания нескольких значений, хранящихся в одном регистре. Эти команды упростили ряд DSP и 3D-операций. Существует также новая команда для преобразования значений с плавающей точкой в целые без необходимости вносить изменения в глобальном режиме округления.

SSSE3 Дополнение к SSE3 для работы с упакованными целыми. Новыми в SSSE3, по сравнению с SSE3, являются 16 уникальных команд, работающих с упакованными целыми. Каждая из них может работать как с 64-х битными (MMX), так и с 128-ми битными (XMM) регистрами, поэтому Intel в своих материалах ссылается на 32 новые команды. Категории новых инструкций: работа со знаком, сдвиги, перемешивание байт, умножения, горизонтальные сложения и вычитания целых.

SSE4 Новый набор команд Intel, впервые реализованный в процессорах серии Penryn.

SSE4 состоит из 54 инструкций, 47 из них относят к SSE4.1 (они есть только в процессорах Penryn). Ожидается, что полный набор команд (SSE4.1 и SSE4.2, то есть 47 + оставшиеся 7 команд) будет доступен в процессорах Nehalem. Ни одна из SSE4 инструкций не работает с 64-битными mmx регистрами, только со 128-битными xmm0-15. Может оказаться, что не будет выпущено 32-битных процессоров с SSE4, только 64-битные — с EM64T. Добавлены инструкции, ускоряющие компенсацию движения в видеокодеках, быстрое чтение из USWC памяти, множество инструкций для упрощения векторизации программ компиляторами. Кроме того, в SSE4.2 добавлены инструкции обработки строк 8/16 битных символов, вычисления CRC32, popcnt. Впервые в SSE4 регистр xmm0 стал использоваться как неявный аргумент для некоторых инструкций. Новые инструкции SSE4.1 включают ускорение видео, работу с векторными примитивами, вставки/извлечения, скалярное умножение векторов, смешивания, проверки бит, округления, чтение WC-памяти. Новые инструкции SSE4.2 включают обработку строк, подсчёт CRC32, подсчет популяции единичных бит, работу с векторными примитивами.



SSE5 Новое расширение x86 инструкций от AMD, названное SSE5. Этот абсолютно новый набор SSE инструкций, созданный специалистами AMD, станет поддерживаться перспективными CPU компании, начиная с 2009 года. SSE5 привносят в классическую x86 архитектуру некоторые возможности, доступные ранее исключительно в RISC процессорах. Набор инструкций SSE5 определяет 47 новых базисных команд, призванных ускорить однопоточные вычисления благодаря увеличению «плотности» обрабатываемых данных. Среди новых инструкций выделяется две основные группы. В первую входят инструкции, аккумулирующие результаты умножения. Инструкции такого типа могут быть полезны для организации итерационных вычислительных процессов при рендеринге изображений или при создании трёхмерных аудио эффектов. Вторая группа новых команд включает инструкции, оперирующие с двумя регистрами и сохраняющие результат в третьем. Это нововведение может позволить разработчикам обойтись без лишних пересылок данных между регистрами в вычислительных алгоритмах. Также, SSE5 содержит и несколько новых инструкций для сравнения векторов, для перестановки и перемещения данных, а также для изменения точности и округления. Основными применениями для SSE5 AMD видит расчётные задачи, обработку мультимедиа контента и средства шифрования. Ожидается, что в счётных приложениях, использующих матричные операции, использование SSE5 может дать 30-процентный прирост производительности. Мультимедийные задачи, требующие выполнения дискретного косинусного преобразования, могут получить 20-процентное ускорение. А алгоритмы шифрования благодаря SSE5 способны получить пятикратный выигрыш в скорости обработки данных.

AVX Следующий набор расширений от Intel.

AES Расширение системы команд AES — реализация в микропроцессоре шифрования AES.

3DNow! Набор инструкций для потоковой обработки вещественных чисел одинарной точности. Поддерживается процессорами AMD начиная с K6-2. Процессорами Intel не поддерживается.

Инструкции 3DNow! используют регистры MMX в качестве операндов (в один регистр помещается два числа одинарной точности), поэтому, в отличие от SSE, при переключении задач не требуется отдельно сохранять контекст 3DNow!.


64-битный режим

К началу 2000-х годов стало очевидно, что 32-битное адресное пространство архитектуры x86 ограничивает производительность приложений, работающих с большими объёмами данных. 32-разрядное адресное пространство позволяет процессору осуществлять непосредственную адресацию лишь 4 Гб данных, этого может оказаться недостаточным для некоторых приложений, связанных, например, с обработкой видео или обслуживанием баз данных.

Для решения этой проблемы Intel разработала новую архитектуру IA-64 — основу семейства процессоров Itanium. Для обеспечения обратной совместимости со старыми приложениями, использующими 32-разрядный код, в IA-64 был предусмотрен режим эмуляции. Однако на практике данный режим работы оказался чрезвычайно медленным.

Компания AMD предложила альтернативное решение проблемы увеличения разрядности процессора. Вместо того, чтобы изобретать совершенно новую систему команд, было предложено ввести 64-разрядное расширение к уже существующей 32-разрядной архитектуре x86. Первоначально новая архитектура называлась x86-64, позже она была переименована в AMD64. Первоначально новый набор инструкций поддерживался процессорами семейств Opteron, Athlon 64 и Turion 64 компании AMD. Успех процессоров, использующих технологию AMD64, наряду с вялым интересом к архитектуре IA-64, побудили Intel лицензировать набор инструкций AMD64. При этом был добавлен ряд специфических инструкций, не присутствовавших в изначальном наборе AMD64. Новая версия архитектуры получила название EM64T.


В литературе и названиях версий своих продуктов компании Microsoft и Sun используют объединённое именование AMD64/EM64T, когда речь заходит о 64-разрядных версиях их операционных систем Windows и Solaris соответственно. В то же время, поставщики программ для операционных систем GNU/Linux, BSD используют метки «x86-64» или «amd64», Mac OS X использует метку «x86_64», если необходимо подчеркнуть, что данное ПО использует 64-разрядные инструкции.

Процессоры Intel

8086 - 16-разрядный процессор i8086, был создан в июне 1978 года. Сначала работал на частотах 4,77 МГц, затем на 8 и 10 МГц. Изготавливался по технологии 3 мкм и имел 29 000 транзисторов.

8088 - Чуть позже, в 1979 году, был разработан i8088, который работал на тех же частотах, что и i8086, но использовал 8-разрядную шину данных (внутренняя шина процессора осталась 16-разрядной) для обеспечения большей совместимости с имевшейся в то время в ходу периферией. Благодаря более низкой цене, широко использовался в ранних системах IBM PC вместо 8086.

80186/80188 - В 1982 году были выпущены 80186 и 80188, которые первоначально не получили широкого распространения из-за того, что IBM не стала использовать их в своих персональных компьютерах. Впрочем, некоторые производители «клонов» сделали это, выпустив ускоренные варианты IBM PC/XT. В то же время, эти процессоры оказались чрезвычайно удачными для использования во встроенных системах и в различных модификациях выпускаются до настоящего времени. В эти процессоры были первоначально добавлено несколько новых команд, повышена тактовая частота. Впоследствии появились модификации, содержащие дополнительные аппаратные средства, такие, как интегрированные контроллеры последовательного порта.

80286 - Объявлен в 1982 году. Работал на частотах 6, а затем 8, 10, 12, 16, 20 МГц. Производился по техпроцессу 1,5 мкм и содержал около 134 тысяч транзисторов. С его появлением появилось такое понятие, как защищённый режим (protected mode) и виртуальная память. Производительность процессора по сравнению с 8086 увеличилась в несколько раз (0,99-2,6 млн операций в секунду).

80386 (i386) - Первый 32-разрядный процессор, работал на частотах 16-40 МГц. Появился в 1985 году. Знаменовал собой революцию в мире процессоров x86. Основные принципы, заложенные в этом чипе, без кардинальных изменений дожили и до наших дней (за всё это время изменения касались, в основном, повышения производительности, расширения набора команд, увеличения разрядности). Первые 386 процессоры содержали серьезную ошибку, приводящую к невозможности функционирования в защищенном режиме. Исправленная версия называлась 386DX. Так же выпускались более дешевые процессоры i386SX с урезанной до 16 бит внешней шиной данных и 24 бит шиной адреса. Для встроенного применения выпускался процессор i386EX.

386 — первый процессор, использовавшийся совместно с кеш-памятью (внешней).



80486 (i486) - Процессор i486 (1989 год) является усовершенствованным 386 процессором и первым скалярным процессором Intel (ряд операций выполнялись за один такт). Имел встроенный FPU (Floating Point Unit — блок вычислений с плавающей запятой) и впервые — встроенную кэш-память (8 Кбайт).

Pentium (i586) - Pentium (1993 год. Intel отказалась от ix86 названий, потому что не могла запатентовать числа.) — первый суперскалярный и суперконвейерный процессор Intel. Суперскалярность — термин, означающий, что процессор позволяет выполнять более одной операции за один такт. Суперконвейерность означает, что процессор имеет несколько вычислительных конвейеров. У Pentium их два, что позволяет ему при одинаковых частотах в идеале быть вдвое производительней 486, выполняя сразу 2 инструкции за такт. Кроме того, особенностью процессора Pentium являлся полностью переработанный и очень мощный на то время блок FPU, производительность которого оставалась недостижимой для конкурентов вплоть до конца 1990-х годов.

Устанавливался в Socket 3, имел удвоенный объём кэша L1 с организацией Write-Thru, встроенный стабилизатор питания, умножение ×2.5 и частоты 63 и 83 МГц.



Pentium Pro (i686) - Pentium Pro (1995 год) — первый процессор шестого поколения. Идеи и технологии, заложенные в данный чип, определили архитектуры всех современных x86-процессоров: блоки предсказания ветвлений, переименование регистров, RISC-ядро, интегрированная в один корпус с ядром кэш-память второго уровня. Однако технологическая сложность ядра данного процессора привела к сравнительно невысокому выходу годных чипов при технологиях того времени, что сказалось на высокой цене Pentium Pro. При этом процессор обладал достаточно низкой производительностью при исполнении 16-разрядного кода. Поэтому данный процессор применялся только в High-End системах и серверах.

Pentium MMX (i586) - Pentium MMX (январь 1997 года) — процессор пятого поколения, и, по сути, просто модификация ядра Pentium. Был добавлен новый блок целочисленных матричных вычислений MMX и увеличен до 32 Кбайт объём кэш-памяти первого уровня.

Pentium II (i686) - Pentium II (май 1997 года) — модификация ядра Pentium Pro с целью сделать его более доступным. Интегрированный кэш и тег кэша были вынесены на отдельные микросхемы с пониженной в два раза частотой. Это упростило и удешевило процессор, хотя и сделало его более медленным, чем Pentium Pro.

Первые процессоры Pentium II выпускались с кэш-памятью второго уровня емкостью 256 Кбайт, затем её объём был увеличен до 512 Кбайт.

Новая конструкция процессора потребовала размещения элементов на печатной плате, что, в свою очередь, привело к изменению конструктива процессора. Данные ЦПУ выпускались в виде картриджей SECC, устанавливающихся в специальный разъём на плате (Slot 1).

Celeron — упрощённая модификация процессоров Pentium II / III / IV / Core / Core 2 для построения недорогих компьютеров. Первый Celeron (ядро Covington, частоты 266/300 МГц) представлял собой Pentium II, лишенный кеша второго уровня и пластикового картриджа. Печатная плата также была упрощена. Такая упаковка получила название SEPP (Sinlge Edge Processor Package). В результате эти процессоры демонстрировали удручающе низкую производительность, хотя стоили очень недорого и легко прибавляли до 50% частоты при разгоне. Все последующие варианты этого процессора имели интегрированный полночастотный кеш второго уровня. Основные отличия процессоров Celeron в объёме этого кэша и частоте шины, а также часто в увеличенной латентности доступа к кэш-памяти по отношению к оригинальному процессору.

Pentium III (i686) - Pentium III, изготовленный изначально по технологическому процессу 0,18 мкм, отличается от P2 главным образом добавлением инструкций SSE. Поздние процессоры этой серии изготавливались по технологическому процессу 0,13 мкм, получили интегрированную в кристалл ядра полночастотную кэш-память (сначала 256 Кбайт, затем — 512 Кбайт) и послужили прообразом процессоров архитектуры Pentium M. Выпускались в конструктивах как SECC/SECC2 (Slot 1), так и FCPGA-370 (PGA-370).

Pentium 4 - Принципиально новый процессор с гиперконвейеризацией (hyperpipelining) — с конвейером, состоящим из 20 ступеней. Согласно заявлениям Intel, процессоры, основанные на данной технологии, позволяют добиться увеличения частоты примерно на 40 процентов относительно семейства P6 при одинаковом технологическом процессе (при «правильной» загрузке процессора). На практике же, первые модели работали даже медленнее, чем Pentium III. Позже дополнены поддержкой 64-битного кода.

Core/Core 2 - После провала последнего поколения процессоров Pentium 4 на ядре Tejas, было решено обратиться к другой ветви продукции. В основе новых процессоров лежит переработанное ядро Pentium M. Таким образом, ядро P6, использованное ещё в процессорах Pentium Pro, продолжило свою эволюцию, нарастив частоту со 150 МГц до 3,2 ГГц и обзаведясь новой системной шиной, поддержкой многоядерности, мультимедийных инструкций.

Процессоры Core — это решение для ноутбуков, одно- и двухъядерное, исполняющее 32-битный код.

Процессоры Core 2 выпускаются как в настольном, так и мобильном исполнении, включают ряд микроархитектурных улучшений и способны исполнять 64-битный код. Количество ядер варьируется от одного до четырёх.

Core i3/Core i5/Core i7 - Дальнейшее развитие идей, заложенных в процессорах Core 2. Сохранив основную конструкцию процессорных ядер, появившийся первым Core i7 получил модульную структуру, позволяющую легко варьировать их количество, встроенный контроллер памяти (трёхканальной DDR3 в высшем сегменте и двухканальной DDR3 в массовом) и новую шину, соединяющую процессор с чипсетом. Микроархитектурные улучшения позволяют Core i7 показывать повышенную производительность в сравнении с Core 2 на равных частотах. Большое внимание было уделено вопросу энергоэффективности нового процессора.

Позже появились более дешевые Core i5/i7 с двухканальным контроллером памяти и четырьмя ядрами, затем — Core i3/i5 с двумя ядрами и встроенным видеоядром. В секторе наиболее производительных решений выпускаются также процессоры Core i7 с трехканальным контроллером памяти и шестью ядрами. Благодаря использованию технологии Hyper Threading эти процессоры способны одновременно исполнять до 12 потоков команд.



Atom - Недорогие сверхэкономичные одно- и двухядерные процессоры, предназначенные для использования в так называемых сетевых компьютерах — нетбуках и неттопах (компьютерах, в которых вычислительная мощность пожертвована в пользу экономичности, бесшумности и малогабаритности). В основе — модифицированное ядро от первых Pentium, которое адаптировали под новый техпроцесс, добавили возможность исполнения 64-битного кода и мультимедийных инструкций, а также кэш-память второго уровня и поддержку многопоточного исполнения (SMT, аналог Hyper Threading). Для упрощения конструкции было решено отказаться от внеочередного исполнения команд, что не лучшим образом сказалось на производительности.

Xeon - Семейство процессоров, ориентированных на серверы и многопоточные вычисления.

Первый представитель этого семейства базировался на архитектуре Pentium II, представлял собой картдридж с печатной платой, на которой монтировались ядро, кэш-память второго уровня и тег кэша. Монтировался в гнездо Slot 2. Современные Xeon-ы базируются на архитектуре Core2/Core i7.


Процессоры AMD

Am8086 / Am8088 / Am186 / Am286 / Am386 / Am486 - Клоны соответствующих процессоров от Intel. Обычно выпускались с максимальной частотой на ступеньку выше, чем у оригинала. Так, Am386DX выпускался с максимальной частотой 40 МГц, тогда как i386DX — 33 МГц. Вплоть до 486DX2-66 других различий между процессорами не было. Программно отличить эти процессоры было невозможно.

5x86 - Клон i486. В то время, как Intel для i486 остановился на частоте 100 МГц, AMD выпускала процессоры с частотами до 133 МГц. Также они отличались увеличенным объёмом кэша первого уровня (16 Кбайт) и множителем (×4).

K5 / SSA5 - Аналоги Pentium. Первые процессоры, разработанные фирмой AMD самостоятельно. Несмотря на превосходство в целочисленных операциях над аналогами от Intel (в ядре данного процессора применялся ряд технологий шестого поколения), производительность блока вычислений с плавающей запятой значительно уступала по производительности процессорам Pentium с аналогичной тактовой частотой. Кроме того, наблюдалась плохая совместимость с ПО некоторых производителей. Недостатки K5 были чрезвычайно преувеличены в различных сетевых и других неформальных обсуждениях и на долгое время способствовали (в целом — несправедливому) ухудшению репутации продукции AMD у пользователей.[2]

K6 - Выпущен в апреле 1997 года. Принципиально новый процессор AMD, основанный на ядре, приобретённом у NexGen. Данный процессор имел конструктив пятого поколения, однако относился к шестому поколению и позиционировался как конкурент Pentium II. Включал в себя блок MMX и несколько переработанный блок FPU. Однако данные блоки всё равно работали на 15-20 % медленнее, чем у аналогичных по частоте процессоров Intel. Процессор имел 64 Кбайт кэша первого уровня.

В целом сравнимая с Pentum II производительность, совместимость со старыми материнскими платами и более ранний старт (AMD представила К6 на месяц раньше, чем Intel представила P-II) сделали его достаточно популярным, однако проблемы с производством у AMD значительно испортили репутацию данного процессора.



K6-2 - Дальнейшее развитие ядра К6. В этих процессорах была добавлена поддержка специализированного набора команд 3DNow!. Реальная производительность, однако, оказалась существенно ниже, чем у аналогичных по частоте Pentium II (это было вызвано тем, что прирост производительности с ростом частоты у P-II был выше благодаря внутреннему кэшу) и конкурировать К6-2 смогли лишь с Celeron. Процессор имел 64 Кбайт кэша первого уровня.

K6-III - Более успешная в технологическом плане, чем K6-2, попытка создания аналога Pentium III. Однако маркетингового успеха не имела. Отличается наличием 64 Кбайт кэша первого уровня и 256 Кбайт кэша второго уровня в ядре, что позволяло ему на равной тактовой тактовой частоте обгонять по производительности Intel Celeron и не очень существенно уступать ранним Pentium III.

Athlon - Очень успешный процессор, благодаря которому фирма AMD сумела восстановить почти утраченные позиции на рынке микропроцессоров. Кэш первого уровня — 128 Кбайт. Первоначально процессор выпускался в картридже с размещением кэша второго уровня (512 Кбайт) на плате и устанавливался в разъём Slot A, который механически, но не электрически совместим с интеловским Slot 1. Затем устанавливался в разъём Socket A и имел 256 Кбайт кэша второго уровня в ядре. По быстродействию — примерный аналог Pentium III.

Duron - Конкурент Celeron поколений Pentium III / Pentium 4. Отличается от Athlon объёмом кэша второго уровня (всего 64 Кбайт), зато интегрированным в кристалл и работавшем на частоте ядра. Производительность заметно выше, чем у аналогичных Celeron, и при выполнении многих задач соответствует Pentium III.

Athlon XP - Продолжение развития архитектуры Athlon. По быстродействию — аналог Pentium 4. По сравнению с обычным Athlon, добавлена поддержка инструкций SSE.

Sempron - Более дешёвый (за счёт уменьшенного кэша второго уровня) вариант процессоров Athlon XP и Athlon 64.

Opteron - Первый процессор, поддерживающий архитектуру x86-64.

Athlon 64 - Первый несерверный процессор, поддерживающий архитектуру x86-64.

Athlon 64 X2 - Продолжение архитектуры Athlon 64, имеет 2 вычислительных ядра.

Athlon FX - Имел репутацию «самого быстрого процессора для игрушек». Является, по сути, серверным процессором Opteron 1xx на десктопных сокетах без поддержки registered-memory. Выпускается малыми партиями. Стоит значительно дороже своих «массовых» собратьев.

Phenom - Дальнейшее развитие архитектуры Athlon 64, выпускается в вариантах с двумя (Athlon 64 X2 Kuma), тремя (Phenom X3 Toliman) и четырьмя (Phenom X4 Agena) ядрами.

Phenom II - Модификация Phenom. Небольшие архитектурные изменения, переход на более тонкий технологический процесс и добавление кэша L3 объёмом от 4 до 6 Мбайт позволили нарастить производительность этих процессоров на 10-20 % по сравнению с предшественниками. Выпускаются в конструктивах Socket AM2+ и Socket AM3. При этом первые могут работать только с памятью DDR2, а вторые — как с DDR2, так и с DDR3. Максимальное число ядер выросло до шести.

Geode - Интегрированное решение (SoC), включающее в себя функции северного моста чипсетов. Модели с наименованием SCxxxx объединяют в одном корпусе ядро процессора, контроллер памяти, графический адаптер и устройство ввода-вывода. Процессоры предназначены для построения тонких клиентов, пользовательских приставок и встроенных контроллеров. Вся серия обладает небольшой потребляемой мощностью и стоимостью.
Первые модели выпускались фирмой Cyrix под названием MediaGX и имели ядро Cyrix 6x86. После поглощения Cyrix компанией National Semiconductor и перепродажи торговой марки компании VIA, процессор был переименован в Geode, разработка процессора была продолжена инженерами National Semiconductor. Впоследствии чип и все наработки были проданы компании AMD. Сейчас Geode выпускается фирмой AMD в трех вариантах. Geode LX и Geode GX основаны на старом ядре Cyrix 6x86. Geode NX имеет ядро Athlon XP. Развитие этого семейства прекратилось ещё в 2006 году, однако чипы будут продолжать выпускаться до тех пор, пока на них есть спрос.

Процессоры Cyrix

Cx486-SLC - Процессоры, предназначенные для установки в гнездо 386SX. Обладали кэш-памятью первого уровня размером 1 Кбайт и набором команд 486 процессоров. Встроенного сопроцессора не имели. В дальнейшем также выпускались модели с удвоением частоты (Cx486SRx²). Предназначались в основном для дешевого апгрейда компьютеров с процессором 386SX.

Cx486-DLC - Процессоры, предназначенные для установки в гнездо 386DX. Обладали кэш-памятью первого уровня размером 4 Кбайт и набором команд 486 процессоров. Встроенного сопроцессора не имели. В дальнейшем также выпускались модели с удвоением частоты (Cx486DRx²). Предназначались в основном для дешевого апгрейда компьютеров с процессором 386DX.

Cx486-S - Аналог i486SX собственной разработки Cyrix. Слегка уступал по производительности аналогам от Intel и Amd.

Cx486-DX - Аналог i486DX собственной разработки Cyrix. Слегка уступал по целочисленной производительности аналогам от Intel и Amd, однако превосходил их в вычислениях с плавающей точкой (сказалось то, что разработанные Cyrix математические сопроцессоры для 386 были одними из лучших).

Cx5x86 (M1sc) - «Побочный продукт» разработки M1 — «M1 scalar», упрощенная его версия для гнезда 486. Был выпущен, чтобы как-то противостоять Intel в борьбе с Pentium. В нём использовались особенности архитектуры, присущие пятому поколению процессоров — конвейеризованный АЛУ, блок предсказания переходов, декодирование и исполнение инструкций за один такт. Общий для инструкций и данных кэш с обратной записью имел объём 16 Кбайт. Процессор оказался достаточно удачным, но особого распространения получить не успел. Выпускался с частотами 100 и 120 МГц.

Cx6x86 (M1) - Несмотря на намек на 6-е поколение процессоров в названии, Cx6x86 был процессором 5-го поколения. Ядро процессора суперскалярное. Кеш первого уровня — общий, 16 Кбайт. В маркировке этих процессоров использовался так называемый «Pentium Rating». Например, процессор с PR-200 должен был соответствовать по производительности процессору Intel Pentium с частотой 200 МГц. При этом реальная частота процессора могла быть значительно ниже. Выпускались эти процессоры с частотой от 80 до 150 МГц и PR от 90+ до 200+. Позже также выпускалась модификация с пониженным энергопотреблением и двойным питанием — Cx6x86L

Cx6x86MX (MII) - Усовершенствованная версия Cx6x86 называлась Cx6x86MX. Основные отличия — увеличенный до 64 Кбайт кеш первого уровня, поддержка инструкций MMX. Частоты — 133..233 МГц, PR — 166..266. В дальнейшем процессор получил поддержку частоты системной шины 100 МГц, и стал называться Cyrix MII (это было сделано для того, чтобы позиционировать процессор как конкурент Intel Pentium II). Частоты — 225..300 МГц, PR — 300..433.

MediaGX - Практически, SoC. В одном корпусе размещались ядро процессора (сначала — Cx5x86, потом — Cx6x86MX), контроллеры ОЗУ и щины PCI, а также UMA видеоядро. Процессор использовал свое собственное гнездо, не был поддержан производителями материнских плат и распостранения не получил. Частоты — 120..180 МГц, PR — 180..233.

Клоны процессоров Cyrix выпускались также IBM, Texas Instruments, SGS Thompson.

На базе ядер Cyrix производятся или производились процессоры VIA, AMD, National Semiconductor.

Процессоры IDT

IDT-C6 Centaur WinChip

Процессор разработан Centaur Technology — подразделением IDT. Являясь процессором под Socket 7, по архитектуре он был гораздо ближе к процессорам 80486. Один 4-стадийный целочисленный конвейер, операции сопроцессора не конвейеризовались. Также отсутствовали внеочередное исполнение, предсказание ветвлений и переименование регистров. При этом процессор имел блок исполнения инструкций MMX, хотя и вдвое более медленный, чем у Pentium MMX. За счёт этого ядро процессора было очень простым, небольшим по количеству транзисторов, габаритам и энергопотреблению. Процессоры выпускались с частотами 180, 200, 225 и 240 МГц и не требовали двойного питания.



WinChip-2

Улучшенный вариант предыдущего процессора. Сопроцессор стал конвейеризуемым, удвоена производительность блока MMX, появилась поддержка инструкций 3DNow!. Частоты — 200—250 МГц.



WinChip-3

Планировался как улучшенная версия предыдущей модели. Основное улучшение — удвоенный размер кэш-памяти. Однако выпущен он так и не был. Centaur Technology в полном составе была продана VIA и на базе этой разработки был сделан VIA C3 с ядром Samuel.



Процессоры OKI

OKI M80C86,OKI M80C88

Клоны8086, 8088 Выпускались в корпусах типа DIP и QFP.



Процессоры Rise Technology

Rise mP6

Процессор для Socket 7 с поддержкой инструкций MMX. Отличался низким энергопотреблением и невысокой производительностью. Выпускался с частотами 150, 166, 190, 200, 250 МГц. Особого распространения не получил и ядро mP6 было продано компании SiS.



Процессоры VIA

VIA Cyrix III / VIA C3

Первый процессор, выпущенный под маркой VIA. Выпускался с разными ядрами от разных команд разработчиков. Разъём Socket 370.

Первый выпуск — на базе ядра Joshua, доставшегося VIA вместе с командой разработчиков Cyrix.

Второй выпуск — с ядром Samuel, разработанным на базе так и невышедшего IDT WinChip-3. Отличался отсутствием кэш-памяти второго уровня и, соответственно, крайне низким уровнем производительности.

Третий выпуск — с ядром Samuel-2, улучшенной версией предыдущего ядра, оснащённой кэш-памятью второго уровня. Процессор выпускался по более тонкой технологии и имел сниженное энергопотребление. После выпуска этого ядра бренд «VIA Cyrix III» окончательно уступил место «VIA С3».

Четвёртый выпуск — с ядром Ezra. Был также вариант Ezra-T, адаптированный для работы с шиной, предназначенной для процессоров Intel с ядром Tualatin. Дальнейшее развитие в направлении энергосбережения.

Пятый выпуск — с ядром Nehemiah (C5P). Это ядро наконец получило полноскоростной сопроцессор, поддержку инструкций SSE, а также поддержку шифрования AES и аппаратный генератор случайных чисел. При этом процессор потерял поддержку инструкций 3DNow!.

VIA C7

Дальнейшее развитие VIA C3. Ядро Esther (C5J), корпусировка — nanoBGA2 (21×21 мм), впаивается прямо на плату. Добавлены аппаратная поддержка Secure Hash SHA-1 и SHA-256 и шифрования RSA, поддержка NX-bit, поддерживаются MMX, SSE, SSE2 и SSE3. Дальнейшее снижение энергопотребления при рабочих частотах до 2 ГГц. Собственная системная шина (VIA V4 800 МГц) для связи с чипсетом. Выпускается также в мобильном (VIA C7-M) и десктопном (VIA C7-D) исполнении.



VIA Eden ESP

Интегрированное решение, включающее в себя процессор VIA C3 c ядром Nehemiah C5P и северный мост чипсета со встроенной UMA-графикой. Отличается крайне низким энергопотреблением (до 7 Вт при частоте 1 ГГц). Выпускается с частотами от 300 МГц (VIA Eden ESP 3000) до 1 ГГц (VIA Eden ESP 10000). Совместимые южные мосты — VT8235M, VT8237R+ (с поддержкой SATA), VT8251 (2×1 PCI-E) и VIA 686B.



VIA CoreFusion

Дальнейшее развитие идей VIA Eden ESP. Выпускается в двух вариантах — VIA Mark и VIA Luke, отличающихся интегрированным видеоядром, поддерживаемым типом памяти и рабочими частотами. Для VIA Mark — это S3 Graphics ProSavage4 / SDR PC133 / 533/800 МГц, а для VIA Luke — VIA UniChrome Pro / DDR PC3200 / 533/800/1000 МГц. Совместимые южные мосты: VT8235M, VT8237R+ (с поддержкой SATA), VT8251 (2×1 PCI-E) и VIA 686B.



VIA Nano

Первый x86-64 процессор VIA на ядре Isaiah. Контактно-совместим с VIA C7. Выпускается с частотами от 1 ГГц до 1,8 ГГц. Энергопотребление модели 1,6 ГГц — до 17 Вт при полной загрузке. Среди нововведений — внеочередное исполнение инструкций. Позиционируется как конкурент Intel Atom.



Процессоры SiS

SiS550

Семейство SoC SiS550 базируется на лицензированном ядре Rise mP6 и выпускается с частотами от 166 до 266 МГц. При этом самые скоростные решения потребляют всего 1,8 Вт. У ядра три целочисленных 8-ступенчатых конвеера. Кэш L1 раздельный, 8+8 Кбайт. Встроенный сопроцессор конвееризован. В состав SiS550 кроме стандартного набора портов входят 128-битное UMA видеоядро AGP 4x, 5.1-канальный звук, поддержка 2-х DIMM (до 1 Гбайт ОЗУ), поддержка софт-модема и UDMA100 IDE контроллер.

В SiS551 так же добавлен встроенный контроллер Smart Card и Memory Stick, а в SiS552 — декодер MPEG2, акселерация проигрывания DVD и VCD.

Также клон SiS551 выпускается Jan Yin Chan Electronics Co., LTD (DM&P) под торговой маркой Vortex86 (чип маркируется как M6127D) и Xcore Corporation Ltd. под торговой маркой Xcore86.



Процессоры, выпускавшиеся в СССР

КР1810ВМ86 - Аналог 8086.

КР1834ВМ86/КР1835ВМ86 - Аналог 80C86.

КМ1810ВМ88 - Аналог на базе 8088.

КР1847ВМ286 - Аналог 80286. Выпускался заводом Ангстрем.


Процессоры МЦСТ

Компанией ЗАО «МЦСТ» выпущен первый процессор «Эльбрус» и вычислительный комплекс на его базе — «Эльбрус-3М1», позволяющий работать в режиме двоичной совместимости с разными процессорами, в том числе с семейством x86. Однако достоверных данных, позволяющих оценить его производительность, как и независимых результатов тестирования, все еще нет.


Чипсет


ЦПУ - набор системной логики (англ. chipset) — набор микросхем, обеспечивающих подключение ЦПУ к ОЗУ и контроллерам периферийных устройств. Как правило, современные наборы системной логики строятся на базе двух СБИС: «северного» и «южного мостов».

Северный мост («англ. Northbridge»), MCH (Memory controller hub), системный контроллер — обеспечивает подключение ЦПУ к узлам, использующим высокопроизводительные шины: ОЗУ, графический контроллер.

Для подключения ЦПУ к системному контроллеру могут использоваться такие FSB-шины, как Hyper-Transport и SCI.

Обычно к системному контроллеру подключается ОЗУ. В таком случае он содержит в себе контроллер памяти. Таким образом, от типа применённого системного контроллера обычно зависит максимальный объём ОЗУ, а также пропускная способность шины памяти персонального компьютера. Но в настоящее время имеется тенденция встраивания контроллера ОЗУ непосредственно в ЦПУ (например, контроллер памяти встроен в процессор в AMD K8), что упрощает функции системного контроллера.

В качестве шины для подключения графического контроллера на современных материнских платах используется PCI Express. Ранее использовались шины общие шины (ISA, VLB, PCI) и шина AGP.



Южный мост («англ. Southbridge»), ICH (I/O controller hub), периферийный контроллер — содержит контроллеры периферийных устройств (жёсткого диска, Ethernet, аудио), контроллеры шин для подключения периферийных устройств (шины PCI, PCI-Express и USB), а также контроллеры шин, к которым подключаются устройства, не требующие высокой пропускной способности (LPC — используется для подключения загрузочного ПЗУ; также шина LPC используется для подключения мультиконтроллера (англ. Super I/O) — микросхемы, обеспечивающей поддержку «устаревших» низкопроизводительных интерфейсов передачи данных: последовательного и параллельного интерфейсов, контроллера клавиатуры и мыши).

Как правило, северный и южный мосты реализуются в виде отдельных СБИС, однако существуют и одночиповые решения. Именно набор системной логики определяет все ключевые особенности материнской платы и то, какие устройства могут подключаться к ней.



Память


1 Простейшая схема взаимодействия оперативной памяти с ЦП



Операти́вная па́мять — часть системы компьютерной памяти, в которой временно хранятся данные и команды, необходимые процессору для выполнения им операции и время доступа к которой не превышает одного его такта. Обязательным условием является адресуемость (каждое машинное слово имеет индивидуальный адрес) памяти. Передача данных в/из оперативную память процессором производится непосредственно, либо через сверхбыструю память.

Оперативное запоминающее устройство, ОЗУ — техническое устройство, реализующее функции оперативной памяти.

ОЗУ может изготавливаться как отдельный блок или входить в конструкцию, например однокристальной ЭВМ или микроконтроллера.



Физические виды ОЗУ

В большинстве современных компьютеров оперативная память представляет собой динамические модули памяти содержащие полупроводниковые БИС ЗУ, организованные по принципу устройств с произвольным доступом. Память динамического типа дешевле, чем статического, и её плотность выше, что позволяет на том же пространстве кремниевой подложки размещать больше ячеек памяти, но при этом её быстродействие ниже. Статическая, наоборот, более быстрая память, но она и дороже. В связи с этим массовую оперативную память строят на модулях динамической памяти, а память статического типа используется для построения кеш-памяти в микропроцессоре.


Память динамического типа (англ. DRAM (Dynamic RAM))

Экономичный вид памяти. Для хранения разряда (бита или трита6) используется схема, состоящая из одного конденсатора и одного транзистора (в некоторых вариациях конденсаторов два). Такой вид памяти решает, во-первых, проблему дороговизны (один конденсатор и один транзистор дешевле нескольких транзисторов) и, во-вторых, компактности (там, где в SRAM размещается один триггер, то есть один бит, можно уместить восемь конденсаторов и транзисторов). Есть и свои минусы. Во-первых, память на основе конденсаторов работает медленнее, поскольку если в SRAM изменение напряжения на входе триггера сразу же приводит к изменению его состояния, то для того чтобы установить в единицу один разряд (один бит) памяти на основе конденсатора, этот конденсатор нужно зарядить, а для того чтобы разряд установить в ноль, соответственно, разрядить. А это гораздо более длительные операции (в 10 и более раз), чем переключение триггера, даже если конденсатор имеет весьма небольшие размеры. Второй существенный минус — конденсаторы склонны к «стеканию» заряда; проще говоря, со временем конденсаторы разряжаются. Причём разряжаются они тем быстрее, чем меньше их ёмкость. За то, что разряды в ней хранятся не статически, а «стекают» динамически во времени память на конденсаторах получила своё название динамическая память. В связи с этим обстоятельством, дабы не потерять содержимое памяти, заряд конденсаторов для восстановления необходимо «регенерировать» через определённый интервал времени. Регенерация выполняется центральным микропроцессором или контроллером памяти, за определённое количество тактов считывания при адресации по строкам. Так как для регенерации памяти периодически приостанавливаются все операции с памятью, это значительно снижает производительность данного вида ОЗУ.
Память статического типа (англ. SRAM (Static RAM))

Статическая оперативная память с произвольным доступом (SRAM, static random access memory) — полупроводниковая оперативная память, в которой каждый двоичный или троичный разряд хранится в схеме с положительной обратной связью, позволяющей поддерживать состояние сигнала без постоянной перезаписи, необходимой в динамической памяти (DRAM). Тем не менее, сохранять данные без перезаписи SRAM может только пока есть питание, то есть SRAM остается энергозависимым типом памяти.

SRAM применяется в микроконтроллерах и ПЛИС, в которых объём ОЗУ невелик (единицы килобайт), зато нужны низкое энергопотребление и высокое быстродействие.

В устройствах с большим объёмом ОЗУ рабочая память выполняется как DRAM. На SRAM делают регистры и кеш-память.

Характеристики памяти DRAM

Основными характеристиками DRAM являются рабочая частота и тайминги.

При обращении к ячейке памяти контроллер памяти задаёт номер банка, номер страницы в нём, номер строки и номер столбца и на все эти запросы тратится время, помимо этого довольно большой период уходит на открытие и закрытие банка после самой операции. На каждое действие требуется время, называемое таймингом.

Основными таймингами DRAM являются: задержка между подачей номера строки и номера столбца, называемая временем полного доступа (англ. RAS to CAS delay), задержка между подачей номера столбца и получением содержимого ячейки, называемая временем рабочего цикла (англ. CAS delay), задержка между чтением последней ячейки и подачей номера новой строки (англ. RAS precharge). Тайминги измеряются в наносекундах, и чем меньше величина этих таймингов, тем быстрее работает оперативная память.

Физическая реализация DRAM

память на ферритовых сердечниках, которые представляют собой тор с обмотками, изготовленный из специальных материалов — ферритов. Эта память была в определенной степени энергонезависимой. Намагниченность сердечников сохранялась до 1 месяца.
Память типа DRAM конструктивно выполняют и в виде отдельных микросхем в корпусах типа DIP, SOIC, BGA, и в виде модулей памяти типа: SIPP, SIMM, DIMM, RIMM.

На многих модулях SIMM и подавляющем числе DIMM устанавливалась SPD (Serial Presence Detect) — небольшая микросхема памяти EEPROM, хранящяя параметры модуля (ёмкость, тип, рабочее напряжение, число банков, время доступа и т. п.), которые программно были доступны как оборудованию, в котором модуль был установлен (применялось для автонастройки параметров), так и пользователям и производителям.




Различные корпуса DRAM. Сверху вниз: DIP, SIPP, SIMM (30-контактный), SIMM (72-контактный), DIMM (168-контактный), DIMM (184-контактный, DDR)



модуль SDRAM в 72-контактном корпусе SO-DIMM



модуль DDR2 в 204-контактном корпусе SO-DIMM
























DIP






16




Суммарный объем до 4 Мб

SIPP
Single Inline Package






30







SIMM
Single Inline Memory Module

FPM



30

29 Мгц

256К-32Мбайт

FPM



72

EDO

50 Мгц/70 нс

DIMM Dual Inline Memory Module

SDRAM Synchronic



168

100 и 133Мгц
60 нс






ESDRAM Enhanced




200 Мгц







DDR DRAM (SDRAM II)













SLDRAM




400 Мгц







RIMM, RDRAM,

Rambus DDR





800 Мгц










































Типы DRAM
Страничная память

Страничная память (англ. page mode DRAM, PM DRAM) являлась одним из первых типов выпускаемой компьютерной оперативной памяти. Память такого типа выпускалась в начале 1990-х годов, но с ростом производительности процессоров и ресурсоёмкости приложений требовалось увеличивать не только объём памяти, но и скорость её работы.
Быстрая страничная память

Быстрая страничная память (англ. fast page mode DRAM, FPM DRAM) появилась в 1995 году. Принципиально новых изменений память не претерпела, а увеличение скорости работы достигалось путём повышенной нагрузки на аппаратную часть памяти. Данный тип памяти в основном применялся для компьютеров с процессорами Intel 80486 или аналогичных процессоров других фирм. Память могла работать на частотах 25 и 33 МГц с временем полного доступа 70 и 60 нс и с временем рабочего цикла 40 и 35 нс соответственно.
EDO DRAM — память с усовершенствованным выходом

C появлением процессоров Intel Pentium память FPM DRAM оказалась совершенно неэффективной. Поэтому следующим шагом стала память с усовершенствованным выходом (англ. extended data out DRAM, EDO DRAM). Эта память появилась на рынке в 1996 году и стала активно использоваться на компьютерах с процессорами Intel Pentium и выше. Её производительность оказалась на 10—15 % выше по сравнению с памятью типа FPM DRAM. Её рабочая частота была 40 и 50 МГц, соответственно, время полного доступа — 60 и 50 нс, а время рабочего цикла — 25 и 20 нс. Эта память содержит регистр-защелку (англ. data latch) выходных данных, что обеспечивает некоторую конвейеризацию работы для повышения производительности при чтении.
SDRAM — синхронная DRAM

В связи с выпуском новых процессоров и постепенным увеличением частоты системной шины, стабильность работы памяти типа EDO DRAM стала заметно падать. Ей на смену пришла синхронная память (англ. synchronous DRAM, SDRAM). Новыми особенностями этого типа памяти являлись использование тактового генератора для синхронизации всех сигналов и использование конвейерной обработки информации. Также память надёжно работала на более высоких частотах системной шины (100 МГц и выше).

Если для FPM и EDO памяти указывается время чтения первой ячейки в цепочке (время доступа), то для SDRAM указывается время считывания последующих ячеек. Цепочка — несколько последовательных ячеек. На считывание первой ячейки уходит довольно много времени (60-70 нс) независимо от типа памяти, а вот время чтения последующих сильно зависит от типа. Рабочие частоты этого типа памяти могли равняться 66, 100 или 133 МГц, время полного доступа — 40 и 30 нс, а время рабочего цикла — 10 и 7,5 нс.

С этим типом памяти применялась технология Virtual Channel Memory (VCM). VCM использует архитектуру виртуального канала, позволяющую более гибко и эффективно передавать данные с использованием каналов регистра на чипе. Данная архитектура интегрирована в SDRAM. VCM, помимо высокой скорости передачи данных, была совместима с существующими SDRAM, что позволяло делать апгрейд системы без значительных затрат и модификаций. Это решение нашло поддержку у некоторых производителей чипсетов.

Enhanced SDRAM (ESDRAM)

Для преодоления некоторых проблем с задержкой сигнала, присущих стандартной DRAM-памяти, было решено встроить небольшое количество SRAM в чип, то есть создать на чипе кеш.

ESDRAM — это, по существу, SDRAM с небольшим количеством SRAM. При малой задержке и пакетной работе достигается частота до 200 МГц. Как и в случае внешней кеш-памяти, SRAM-кеш предназначен для хранения и выборки наиболее часто используемых данных. Отсюда и уменьшение времени доступа к данным медленной DRAM.


Пакетная EDO RAM

Пакетная память EDO RAM (англ. burst extended data output DRAM, BEDO DRAM) стала дешёвой альтернативой памяти типа SDRAM. Основанная на памяти EDO DRAM, её ключевой особенностью являлась технология поблочного чтения данных (блок данных читался за один такт), что сделало её работу быстрее, чем у памяти типа SDRAM. Однако невозможность работать на частоте системной шины более 66 МГц не позволила данному типу памяти стать популярным.
Video RAM

Специальный тип оперативной памяти — Video RAM (VRAM) — был разработан на основе памяти типа SDRAM для использования в видеоплатах. Он позволял обеспечить непрерывный поток данных в процессе обновления изображения, что было необходимо для реализации изображений высокого качества. На основе памяти типа VRAM, появилась спецификация памяти типа Windows RAM (WRAM), иногда её ошибочно связывают с операционными системами семейства Windows. Её производительность стала на 25 % выше, чем у оригинальной памяти типа SDRAM, благодаря некоторым техническим изменениям.
DDR SDRAM

По сравнению с обычной памятью типа SDRAM, в памяти SDRAM с удвоенной скоростью передачи данных (англ. double data rate SDRAM, DDR SDRAM или SDRAM II) была вдвое увеличена пропускная способность. Первоначально память такого типа применялась в видеоплатах, но позднее появилась поддержка DDR SDRAM со стороны чипсетов.

У всех предыдущих DRAM были разделены линии адреса, данных и управления, которые накладывают ограничения на скорость работы устройств. Для преодоления этого ограничения в некоторых технологических решениях все сигналы стали выполняться на одной шине. Двумя из таких решений являются технологии DRDRAM и SLDRAM. Они получили наибольшую популярность и заслуживают внимания. Стандарт SLDRAM является открытым и, подобно предыдущей технологии, SLDRAM использует оба перепада тактового сигнала. Что касается интерфейса, то SLDRAM перенимает протокол, названный SynchLink Interface и стремится работать на частоте 400 МГц.

Память DDR SDRAM работает на частотах в 100, 133, 166 и 200 МГц, её время полного доступа — 30 и 22,5 нс, а время рабочего цикла — 5, 3,75, 3 и 2,5 нс.

Так как частота синхронизации лежит в пределах от 100 до 200 МГц, а данные передаются по 2 бита на один синхроимпульс, как по фронту, так и по срезу тактового импульса, то эффективная частота передачи данных лежит в пределах от 200 до 400 МГц. Такие модули памяти обозначаются DDR200, DDR266, DDR333, DDR400.


Direct RDRAM или Direct Rambus DRAM

Тип памяти RDRAM является разработкой компании Rambus. Высокое быстродействие этой памяти достигается рядом особенностей, не встречающихся в других типах памяти. Первоначальная очень высокая стоимость памяти RDRAM привела к тому, что производители мощных компьютеров предпочли менее производительную, зато более дешёвую память DDR SDRAM. Рабочие частоты памяти — 400, 600 и 800 МГц, время полного доступа — до 30 нс, время рабочего цикла — до 2,5 нс.
DDR2 SDRAM

Конструктивно новый тип оперативной памяти DDR2 SDRAM был выпущен в 2004 году. Основываясь на технологии DDR SDRAM, этот тип памяти за счёт технических изменений показывает более высокое быстродействие и предназначен для использования на современных компьютерах. Память может работать с тактовой частотой шины 200, 266, 333, 337, 400, 533, 575 и 600 МГц. При этом эффективная частота передачи данных соответственно будет 400, 533, 667, 675, 800, 1066, 1150 и 1200 МГц. Некоторые производители модулей памяти помимо стандартных частот выпускают и образцы, работающие на нестандартных (промежуточных) частотах. Они предназначены для использования в разогнанных системах, где требуется запас по частоте. Время полного доступа — 25, 11,25, 9, 7,5 нс и менее. Время рабочего цикла — от 5 до 1,67 нс.
DDR3 SDRAM

Этот тип памяти основан на технологиях DDR2 SDRAM со вдвое увеличенной частотой передачи данных по шине памяти. Отличается пониженным энергопотреблением по сравнению с предшественниками. Частота полосы пропускания лежит в пределах от 800 до 2400 МГц (рекорд частоты — более 3000 МГц), что обеспечивает большую пропускную способность по сравнению со всеми предшественниками.

Модули памяти типа SDRAM

наиболее распространены в виде 168-контактных DIMM-модулей, памяти типа DDR SDRAM — в виде 184-контактных, а модули типа DDR2, DDR3 и FB-DIMM SDRAM — 240-контактных модулей.
Модули SO-DIMM

Для портативных и компактных устройств (материнских плат форм-фактора Mini-ITX, лэптопов, ноутбуков, таблетов и т. п.), а также принтеров, сетевой и телекоммуникационной техники и пр. широко применяются конструктивно уменьшенные модули DRAM (как SDRAM, так и DDR SDRAM) — SO-DIMM (Small outline DIMM) — аналоги модулей DIMM в компактном исполнении для экономии места. Модули SO-DIMM существуют в 72-, 100-, 144-, 200- и 204-контактном исполнении.
Модули RIMM

Модули типа RIMM (Rambus In-line Memory Module) менее распространены, в них выпускается память типа RDRAM. Они представлены 168- и 184-контактными разновидностями, причём на материнской плате такие модули обязательно должны устанавливаться только в парах, в противном случае в пустые разъёмы устанавливаются специальные модули-заглушки (это связано с особенностями конструкции таких модулей). Также существуют 242-контактные PC1066 RDRAM модули RIMM 4200, не совместимые[1] с 184-контактными разъёмами, и уменьшенная версия RIMM — SO-RIMM, которые применяются в портативных устройствах.

Шина


Компьютерная ши́на (от англ. computer bus, bidirectional universal switch — двунаправленный универсальный коммутатор) — в архитектуре компьютера подсистема, которая передаёт данные между функциональными блоками компьютера. Обычно шина управляется драйвером. В отличие от связи точка-точка, к шине можно подключить несколько устройств по одному набору проводников. Каждая шина определяет свой набор коннекторов (соединений) для физического подключения устройств, карт и кабелей.
Шина адреса

Шина адреса — компьютерная шина, используемая центральным процессором или устройствами, способными инициировать сеансы DMA, для указания физического адреса слова ОЗУ (или начала блока слов), к которому устройство может обратиться для проведения операции чтения или записи.

Основной характеристикой шины адреса является её ширина в битах. Ширина шины адреса определяет объём адресуемой памяти. Например, если ширина адресной шины составляет 20 бит, и размер слова памяти равен одному байту (минимальный адресуемый объём данных), то объём памяти, который можно адресовать, составляет 220 = 1 048 576 байтов (1 МБайт) как в IBM PC/XT.


Шина данных

Шина данных — шина, предназначенная для передачи информации. На материнской плате шина состоит из множества параллельно идущих через всех потребителей данных

Основной характеристикой шины данных является её ширина в битах. Ширина шины данных определяет количество информации, которое можно передать за один такт.


Шина управления

Шина управления — компьютерная шина, по которой передаются сигналы, определяющие характер обмена информацией по магистрали. Сигналы управления определяют, какую операцию (считывание или запись информации из памяти) нужно производить, синхронизируют обмен информацией между устройствами и т. д.

Эта шина не имеет такой же четкой структуры, как шина данных или шина адреса. В шину управления условно объединяют набор линий, передающих различные управляющие сигналы от процессора на все периферийные устройства и обратно. В шине управления присутствует линии, передающие следующие сигналы:

RD — сигнал чтения;

WR — сигнал записи;

MREQ — сигнал, инициализации устройств памяти (ОЗУ или ПЗУ);

IORQ -сигнал инициализации портов ввода/вывода.

READY — сигнал готовности,

RESET — сигнал сброса.


История
Первое поколение

Ранние компьютерные шины были группой проводников, подключающей компьютерную память и периферию к процессору. Почти всегда для памяти и периферии использовались разные шины, с разным способом доступа, задержками, протоколами.

Одним из первых усовершенствований стало использование прерываний. До их внедрения компьютеры выполняли операции ввода-вывода в цикле ожидания готовности периферийного устройства. Это было бесполезной тратой времени для программ, которые могли делать другие задачи. Также, если программа пыталась выполнить другие задачи, она могла проверить состояние устройства слишком поздно и потерять данные. Поэтому инженеры дали возможность периферии прерывать процессор. Прерывания имели приоритет, так как процессор может выполнять только код для одного прерывания в один момент времени, а также некоторые устройства требовали меньших задержек, чем другие.

Некоторое время спустя, компьютеры стали распределять память между процессорами. На них доступ к шине также получил приоритеты.

Классический и простой способ обеспечить приоритеты прерываний или доступа к шине заключался в цепном подключении устройств.

DEC отмечала, что две разные шины могут быть излишними и дорогими для малых, серийных компьютеров и предложила отображать периферийные устройства на шину памяти, так, что они выглядели как области памяти. В то время это было очень смелым решением, и критики предсказывали ему провал.

Первые миникомпьютерные шины представляли пассивные объединительные платы, подключенные к контактам микропроцессора. Память и другие устройства подключались к шине с использованием тех же контактов адреса и данных, что и процессор. Все контакты были подключены параллельно. В некоторых случаях, например в IBM PC, необходимы дополнительные инструкции процессора для генерации сигналов, чтобы шина была настоящей шиной ввода-вывода.

Во многих микроконтроллерах и встраиваемых системах шины ввода-вывода до сих пор не существует. Процесс передачи контролируется ЦПУ, который в большинстве случаев читает и пишет информацию в устройства, так, как будто они являются блоками памяти. Все устройства используют общий источник тактового сигнала. Периферия может запросить обработку информации путём подачи сигналов на специальные контакты ЦПУ, используя какие-либо формы прерываний. Например, контроллер жёсткого диска уведомит процессор о готовности новой порции данных для чтения, после чего процессор должен считать их из области памяти, соответствующей контроллеру. Почти все ранние компьютеры были построены по таким принципам, начиная от Altair с шиной S-100 (англ.), заканчивая IBM PC в 1980 х.

Такие простые шины имели серьёзный недостаток для универсальных компьютеров. Всё оборудование на шине должно было передавать информацию на одной скорости и использовать один источник синхросигнала. Увеличение скорости процессора было непростым, так как требовало такого же ускорения всех устройств. Это часто приводило к ситуации, когда очень быстрым процессорам приходилось замедляться для возможности передачи информации некоторым устройствам. Хотя это допустимо для встраиваемых систем, данная проблема непозволительна для коммерческих компьютеров. Другая проблема состоит в том, что процессор требуется для любых операций, и когда он занят другими операциями, реальная пропускная способность шины может значительно страдать.

Такие компьютерные шины были сложны в настройке, при наличии широкого спектра оборудования. Например, каждая добавляемая карта расширения могла требовать установки множества переключателей для задания адреса памяти, адреса ввода-вывода, приоритетов и номеров прерываний.

Второе поколение

Компьютерные шины «второго поколения», например NuBus решали некоторые из вышеперечисленных проблем. Они обычно разделяли компьютер на две «части», процессор и память в одной и различные устройства в другой. Между частями устанавливался специальный контроллер шин (bus controller). Такая архитектура позволила увеличивать скорость процессора без влияния на шину, разгрузить процессор от задач управления шиной. При помощи контроллера устройства на шине могли взаимодействовать друг с другом без вмешательства центрального процессора. Новые шины имели лучшую производительность, но также требовали более сложных карт расширения. Проблемы скорости часто решались увеличением разрядности шины данных, с 8-ми битных шин первого поколения до 16 или 32-х битных шин во втором поколении. Также появилась программная настройка устройств для упрощения подключения новых устройств, ныне стандартизованная как Plug-n-play.

Однако новые шины, так же как и предыдущее поколение, требовали одинаковых скоростей от устройств на одной шине. Процессор и память теперь были изолированы на собственной шине и их скорость росла быстрее, чем скорость периферийной шины. В результате, шины были слишком медленны для новых систем и машины страдали от нехватки данных. Один из примеров данной проблемы: видеокарты быстро совершенствовались, и им не хватало пропускной способности даже новых шин Peripheral Component Interconneсt (PCI). Компьютеры стали включать в себя Accelerated Graphics Port (AGP) только для работы с видеоадаптерами. В 2004 году AGP снова стало недостаточно быстрым для мощных видеокарт и AGP стал замещаться новой шиной PCI Express

Увеличивающееся число внешних устройств стало применять собственные шины. Когда были изобретены приводы дисков, они присоединялись к машине при помощи карты, подключаемой к шине. Из-за этого компьютеры имели много слотов расширения. Но в 1980 х и 1990 х были изобретены новые шины SCSI и IDE решившие эту проблему и оставив большую часть разъёмов расширения в новых системах пустыми. В наше время типичная машина поддерживает около пяти различных шин.

Шины стали разделять на внутренние (local bus) и внешние (external bus). Первые разработаны для подключения внутренних устройств, таких как видеоадаптеры и звуковые платы, а вторые предназначались для подключения внешних устройств, например, сканеров. IDE является внешней шиной по своему предназначению, но почти всегда используется внутри компьютера.


Третье поколение

Шины «третьего поколения» в настоящее время[когда?] находятся в процессе выхода на рынок, включая HyperTransport и InfiniBand. Они обычно позволяют использовать как большие скорости, необходимые для памяти, видеокарт и межпроцессорного взаимодействия, так и небольшие при работе с медленными устройствами, например, приводами дисков. Также они стремятся к большей гибкости в терминах физических подключений, позволяя использовать себя и как внутренние и как внешние шины, например для объединения компьютеров. Это приводит к сложным проблемам при удовлетворении различных требований, так что большая часть работ по данным шинам связана с программным обеспечением, а не с самой аппаратурой. В общем, шины третьего поколения больше похожи на компьютерные сети, чем на изначальные идеи шин, с большими накладными расходами, чем у ранних систем. Также они позволяют использовать шину нескольким устройствам одновременно.

Современные интегральные схемы часто разрабатываются из заранее созданных частей. Разработаны шины (например Wishbone) для более простой интеграции различных частей интегральных схем.


Пропускная способность



Интерфейс




разрядность /частота

пропускная способность




ISA



8 / 4,77 МГц [7]

9,6 Мбит/с

1981

ISA

16 / 8,33 МГц[7]

42,4 Мбит/с

1984

EISA



32 / 8.33 МГц

256 Мбит/с

1988

PCI 2.0




32 / 33 МГц

1 Гбит/с




PCI 2.1-3.0




64 / 33 МГц

2 Гбит/с




PCI 2.1-3.0




64 / 66 МГц

4 Гбит/с




AGP 1.0 (1x)




32 / 66 МГц

2 Гбит/с




PCI-X




64 / 133 МГц

8 528 Мбит/с




PCI-X DDR (266)




64 / 266 МГц

17 066 Мбит/с




PCI Express 1.0 (x16)




- / 2.50 ГГц

32 000 Мбит/с




PCI-X QDR (533)




64 / 266 МГц

34 133 Мбит/с




PCI Express 2.0 (x32)




- / 5,00 ГГц

128,00 Гбит/с




PCI Express 3.0 (x32)




- / -

204,80 Гбит/с



















AGP 1.0 (2x)




32 / 66 МГц

4,2 Гбит/с




AGP 2.0 (4x)




32 / 66 МГц

8 528 Мбит/с




AGP 3.0 (8x)




32 / 66 МГц

17 Гбит/с




AGP 3.0 (8x)




64 / 66 МГц

34 133 Мбит/с




HyperTransport 2.0




32 / 1.40 ГГц

179,20 Гбит/с




HyperTransport 3.0




32 / 2.60 ГГц

332,80 Гбит/с




HyperTransport 3.1




32 / 3.20 ГГц

409,60 Гбит/с



PCI (англ. Peripheral component interconnect, дословно — взаимосвязь периферийных компонентов) — шина ввода/вывода для подключения периферийных устройств к материнской плате компьютера.






Белые разъёмы на материнской плате — 32-разрядные PCI.



Типы PCI-слотов



Слоты PCI и PCI-Express на материнской плате, для сравнения



На фотографии 4 слота PCI Express: x4, x16, x1, опять x16, внизу стандартный 32-разрядный слот PCI, на материнской плате DFI LanParty nForce4 SLI-DR












Стандарт на шину PCI определяет:

физические параметры (например, разъёмы и разводку сигнальных линий);

электрические параметры (например, напряжения);

логическую модель (например, типы циклов шины, адресацию на шине).
Развитием стандарта PCI занимается организация PCI Special Interest Group.
История создания
Весной 1991 года компания Intel завершает разработку первой макетной версии шины PCI. Перед инженерами была поставлена задача разработать недорогое и производительное решение, которое позволило бы реализовать возможности процессоров 486, Pentium и Pentium Pro. Кроме того, было необходимо учесть ошибки допущенные VESA при проектировании шины VLB (электрическая нагрузка не позволяла подключать более 3 плат расширения), а также реализовать автоконфигурирование устройств по примеру протокола Autoconfig для компьютеров Amiga.
В 1992 году появляется первая версия шины PCI, Intel объявляет, что стандарт шины будет открытым и создаёт PCI Special Interest Group. Благодаря этому, любой заинтересованный разработчик получает возможность создавать устройства для шины PCI без необходимости приобретения лицензии. Первая версия шины имела тактовую частоту 33 МГц, могла быть 32 или 64 битной, а устройства могли работать с сигналами в 5 В или 3,3 В. Теоретически, пропускная способность шины 133 Мбайт/с, однако в реальности пропускная способность составляла около 80 Мбайт/с.
В середине 1993 года компания Intel выходит из ассоциации VESA и начинает предпринимать активные шаги по продвижению шины PCI на рынке. Ответом на критику со стороны специалистов из конференций Usenet и конкурирующих компаний (характеристики шины были во многом аналогичны, например Zorro III, публиковались статьи об ошибочном дизайне шины) стала PCI 2.0.
В 1995 году появляется версия PCI 2.1 (ещё одно название — «параллельная шина PCI», которая обеспечила передачу данных по шине с частотой 66 МГц и максимальную скорость передачи в 533 Мбайт/с (для 64-битного варианта с частотой 66 МГц). Кроме того, эта шина уже была поддержана на уровне ОС Windows 95 (технология Plug and Play), что позволило пользователям IBM PC больше не чувствовать себя ущемлёнными по отношению к другим платформам. Версия шины PCI 2.1 оказалась настолько популярной, что вскоре уже она была перенесена на платформы с процессорами Alpha, MIPS, PowerPC, SPARC и др.
В 1997 году, в связи с развитием компьютерной графики и разработкой шины AGP, шина PCI перестала удовлетворять новым, повышенным требованием к видеокартам и перестала использоваться для установки видеокарт.
В настоящее время интерфейс PCI постепенно вытесняется интерфейсами PCI Express, HyperTransport и USB. На современные материнские платы (по состоянию на 2010 год) устанавливается лишь один, редко два PCI разъема, вместо 5-6, устанавливавшихся ранее. На некоторые современные материнские платы (в основном High-End класса) PCI разъем не устанавливается вовсе.

[править]

Основные сведения
Первоначально 32 проводника адрес/данные на частоте 33 МГц. Позже появились версии с 64 проводниками (используется дополнительная колодка разъема) и частотой 66 МГц.
Шина децентрализована, нет главного устройства, любое устройство может стать инициатором транзакции. Для выбора инициатора используется арбитраж с отдельно стоящей логикой арбитра. Арбитраж «скрытый», не отбирает времени — выбор нового инициатора происходит во время транзакции, исполняемой предыдущим инициатором.
Транзакция состоит из 1 или 2 циклов адреса (2 цикла адреса используются для передачи 64-битных адресов, поддерживаются не всеми устройствами, дают поддержку DMA на памяти более 4 Гб) и одного или многих циклов данных. Транзакция со многими циклами данных называется «взрывной» (burst), понимается как чтение/запись подряд идущих адресов и даёт более высокую скорость — один цикл адреса на несколько, а не на каждый цикл данных, и отсутствие простоев (на «успокоение» проводников) между транзакциями.
Специальные типы транзакций используются для обращений к конфигурационному пространству устройства.
«Взрывная» транзакция может быть временно приостановлена обоими устройствами из-за отсутствия данных в буфере или его переполнения.
Поддерживаются «расщеплённые» транзакции, когда целевое устройство отвечает состоянием «в процессе» и инициатор должен освободить шину для других устройств, захватить её снова через арбитраж и повторить транзакцию. Это делается, пока целевое устройство не ответит «сделано». Используется для сопряжения шин с разными скоростями (сама PCI и frontside процессора) и для предотвращения тупиковых ситуаций в сценарии с многими межшинными мостами.
Богатая поддержка межшинных мостов. Богатая поддержка режимов кэширования, таких как:

posted write — данные записи немедленно принимаются мостом, и мост сразу отвечает «сделано», уже после этого пытаясь провести операцию записи на ведомой шине.

write combining — несколько запросов на posted write, идущих подряд по адресам, соединяются в мосте в одну «взрывную» транзакцию на ведомой шине.

prefetching — используется при транзакциях чтения, означает выборку сразу большого диапазона адресов одной «взрывной» транзакцией в кеш моста, дальнейшие обращения исполняются самим мостом без операций на ведомой шине.


Прерывания поддерживаются либо как Message Signaled Interrupts (новое), либо классическим способом с использованием проводников INTA-D#. Проводники прерываний работают независимо от всей остальной шины, возможно разделение одного проводника многими устройствами.

[править]

Конфигурирование
PCI-устройства с точки зрения пользователя самонастраиваемы (Plug and Play). После старта компьютера системное программное обеспечение обследует конфигурационное пространство PCI каждого устройства, подключённого к шине, и распределяет ресурсы.
Каждое устройство может затребовать до шести диапазонов в адресном пространстве памяти PCI или в адресном пространстве ввода-вывода PCI.
Кроме того, устройства могут иметь ПЗУ, содержащее исполняемый код для процессоров x86 или PA-RISC, Open Firmware (системное ПО компьютеров на базе SPARC и PowerPC) или драйвер EFI.
Настройка прерываний осуществляется также системным программным обеспечением (в отличие от шины ISA, где настройка прерываний осуществлялась переключателями на карте). Запрос на прерывание на шине PCI передаётся с помощью изменения уровня сигнала на одной из линий IRQ, поэтому имеется возможность работы нескольких устройств с одной линией запроса прерывания; обычно системное ПО пытается выделить каждому устройству отдельное прерывание для увеличения производительности.

[править]

Спецификация шины PCI

частота шины — 33,33 или 66,66 МГц, передача синхронная;

разрядность шины — 32 или 64 бита, шина мультиплексированная (адрес и данные передаются по одним и тем же линиям);

пиковая пропускная способность для 32-разрядного варианта, работающего на частоте 33,33 МГц — 133 Мбайт/с;

адресное пространство памяти — 32 бита (4 байта);

адресное пространство портов ввода-вывода — 32 бита (4 байта);

конфигурационное адресное пространство (для одной функции) 256 байт;

напряжение 3,3 или 5 В.

[править]

Распиновка


http://pinouts.ru/Slots/PCI.shtml

[править]

Стандартные модификации PCI

Типы PCI-слотов

[править]

PCI 2.0
Первая версия базового стандарта, получившая широкое распространение, использовались как карты, так и слоты с сигнальным напряжением только 5 вольт. Пиковая пропускная способность — 133 Мбайт/с;

[править]

PCI 2.1 — 3.0


Отличались от версии 2.0 возможностью одновременной работы нескольких шинных задатчиков (англ. bus-master т. н. конкурентный режим), а также появлением универсальных карт расширения, способных работать в слотах использующих как с напряжение 5 вольт, так и в слотах использующих 3,3 вольта (с частотой 33 и 66 МГц соответственно). Пиковая пропускная способность для 33 МГц — 133 Мбайт/с, а для 66 МГц — 266 Мбайт/с;

Версия 2.1 — работа с картами рассчитанными на напряжение 3,3 вольта, наличие соответствующих линий питания являлась опциональной;

Версия 2.2 — сделанные в соответствии с этими стандартами карты расширения имеют универсальный ключ разъёма по питанию и способны работать во многих более поздних разновидностях слотов шины PCI, а также, в некоторых случаях, и в слотах версии 2.1;

Версия 2.3 — несовместима с картами PCI рассчитанными на использование 5 вольт, несмотря на продолжающееся использование 32-битных слотов с 5 вольтовым ключом. Карты расширения имеют универсальный разъём, но не способны работать в 5 вольтовых слотах ранних версий (до 2.1 включительно);

Версия 3.0 — завершает переход на карты PCI 3,3 вольт, карты PCI 5 вольт больше не поддерживаются.

[править]

PCI 64
Расширение базового стандарта PCI, появившееся в версии 2.1, удваивающее число линий данных, и, следовательно, пропускную способность. Слот PCI64 является удлинённой версией обычного PCI-слота. Формально совместимость 32-битных карт с 64-битным слотами (при условии наличия общего поддерживаемого сигнального напряжения) полная, а совместимость 64-битной карты с 32-битным слотами является ограниченной (в любом случае произойдёт потеря производительности). Работает на тактовой частоте 33 МГц. Пиковая пропускная способность — 266 Мбайт/с;

Версия 1 — использует слот PCI 64-бита и напряжение 5 вольт;

Версия 2 — использует слот PCI 64-бита и напряжение 3,3 вольта;

[править]

PCI 66
Версия PCI 66 является работающим на тактовой частоте 66 МГц развитием PCI 64; использует напряжение 3,3 вольта в слоте; карты имеют универсальный, либо 3,3 В форм-фактор. Пиковая пропускная способность — 533 Мбайт/с;

[править]

PCI 64/66
Комбинация PCI 64 и PCI 66, позволяет вчетверо увеличить скорость передачи данных по сравнению с базовым стандартом PCI; использует 64-битные 3,3 вольтовые слоты, совместимые только с универсальными и 3,3 вольтовые 32-битные карты расширения. Карты стандарта PCI64/66 имеют либо универсальный (но имеющий ограниченную совместимость с 32-битными слотами) либо 3,3 волтовый форм-фактор (последний вариант принципиально не совместим с 32-битными 33 МГц слотами популярных стандартов). Пиковая пропускная способность — 533 Мбайт/с;

[править]

PCI-X
Развитие версии PCI 64. Для всех вариантов шины существуют следующие ограничения по количеству подключаемых к каждой шине устройств: 66 МГц — 4, 100 МГц — 2, 133 МГц — 1 (или 2, если одно или оба устройства не находятся на платах расширения, а уже интегрированы на одну плату вместе с контроллером), 266, 533 МГц и выше — 1;

Версия 1.0 — введено две новые рабочие частоты: 100 и 133 МГц, а также механизм раздельных транзакций для улучшения производительности при одновременной работе нескольких устройств. Как правило, обратно совместима со всеми 3,3 В и универсальными PCI-картами. Карты обычно выполняются в 64-битном 3,3 В формате и имеют ограниченную обратную совместимость со слотами PCI64/66, а некоторые — в универсальном формате и способны работать (хотя практической ценности это почти не имеет) в обычном PCI 2.2/2.3. Пиковая пропускная способность — 1024 Мбайт/с;

Версия 2.0 — введено две новые рабочие частоты: 266 и 533 МГц, а также коррекция ошибок чётности при передаче данных (ECC). Расширяет конфигурационное пространство PCI до 4096 байт и допускает расщепление на 4 независимых 16-битных шины, что применяется исключительно во встраиваемых и промышленных системах, сигнальное напряжение снижено до 1,5 В, но сохранена обратная совместимость разъёмов со всеми картами, использующими сигнальное напряжение 3,3 В. Пиковая пропускная способность — 4096 Мбайт/с;

[править]

Mini PCI
Новый форм-фактор PCI 2.2 предназначен для использования, в основном, в ноутбуках;

[править]

Cardbus
PCMCIA форм-фактор для 32-битных карт, 33 МГц PCI;

[править]

CompactPCI
Используются модули размера Eurocard, включаемые в PCI backplane;

[править]

PC/104-Plus
Индустриальная шина, использующая набор сигналов PCI, но с другим разъёмом;

[править]

PMC
PCI Mezzanine Card, мезонинная шина соответствующая стандарту IEEE P1386.1;

[править]

ATCA или AdvancedTCA
Шина следующего поколения для телекоммуникационной индустрии.

[править]

Другие варианты PCI

Слоты PCI и PCI-Express на материнской плате, для сравнения

PCI Express (ранее известный как 3GI0/Arapaho) — новый последовательный интерфейс, использующий программную модель PCI, однако обладающий более производительным физическим уровнем (используется LVDS и новые разъёмы).

PCI Express, или PCIe, или PCI-E (также известная как 3GIO for 3rd Generation I/O; не путать с PCI-X и PXI) — компьютерная шина, использующая программную модель шины PCI и высокопроизводительный физический протокол, основанный на последовательной передаче данных.


Развитием стандарта PCI Express занимается организация PCI Special Interest Group.
В отличие от шины PCI, использовавшей для передачи данных общую шину, PCI Express, в общем случае, является пакетной сетью с топологией типа звезда, устройства PCI Express взаимодействуют между собой через среду, образованную коммутаторами, при этом каждое устройство напрямую связано соединением типа точка-точка с коммутатором.
Кроме того, шиной PCI Express поддерживается:

горячая замена карт;

гарантированная полоса пропускания (QoS);

управление энергопотреблением;

контроль целостности передаваемых данных.
Разработка стандарта PCI Express была начата фирмой Intel после отказа от шины InfiniBand. Официально первая базовая спецификация PCI Express появилась в июле 2002 года.
Шина PCI Express нацелена на использование только в качестве локальной шины. Так как программная модель PCI Express во многом унаследована от PCI, то существующие системы и контроллеры могут быть доработаны для использования шины PCI Express заменой только физического уровня, без доработки программного обеспечения. Высокая пиковая производительность шины PCI Express позволяет использовать её вместо шин AGP и тем более PCI и PCI-X. Ожидается, что PCI Express заменит эти шины в персональных компьютерах.
[править]

Внутренние накопители

Интерфейс пропускная способность

биты байты



Интерфейс НГМД ПК

0,5 Мбит/с

0,062 МБ/c

ATA-1 (DMA-0)

33,6 Мбит/с

4,2 МБ/c

ATA-2 (DMA-1)

106 Мбит/с

13,3 МБ/c

ATA-2 (DMA-2)

133 Мбит/с

16,6 МБ/c

ATA-4 (UDMA-0)

133 Мбит/с

16,7 МБ/c

ATA-4 (UDMA-1)

200 Мбит/с

25,0 МБ/c

ATA-4 (UDMA-2)

266 Мбит/с

33,3 МБ/c

ATA-5 (UDMA-3)

356 Мбит/с

44,4 МБ/c

ATA-5 (UDMA-4)

534 Мбит/с

66,6 МБ/c

ATA-6 (UDMA-5)

800 Мбит/с

100 МБ/c

ATA-7 (UDMA-6)

1066 Мбит/с

133 МБ/c

SATA 1.x 1.5Gb/s

1,2 Гбит/с

150 МБ/c

SATA 2.x 3Gb/s

2,4 Гбит/с

300 МБ/c

SATA 3.x 6Gb/s

4,8 Гбит/с

600 МБ/c

[править]

Обмен данными с внешними устройствамиИнтерфейс пропускная способность

биты байты



RS-232

230,4 кбит/с

28,8 кБ/с

USB Low Speed

1,5 Мбит/с

187 кБ/с

USB Full Speed

12 Мбит/с

1,5 МБ/с

FireWire 400

400 Мбит/с

50 МБ/с

USB Hi-Speed

480 Мбит/с

60 МБ/с

FireWire 800

800 Мбит/с

100 МБ/с

FireWire 1600

1 600 Мбит/с

200 МБ/с

eSATA (SATA 300)

2 400 Мбит/с

300 МБ/с

FireWire 3200

3 200 Мбит/с

400 МБ/с

USB 3.0

4 800 Mбит/с

600 МБ/с

Оперативная памятьНаименование пропускная способность



биты байты

FPM DRAM

1,408 Гбит/с

176 МБ/с

EDO DRAM

2,112 Гбит/с

264 МБ/с

SPARC MBus (англ.)

2,550 Гбит/с

320 МБ/с

PC1600 (DDR-200) (далее для одноканального режима)

12,50 Гбит/с

1 600 МБ/с

PC2100 (DDR-266)

16,66 Гбит/с

2 133 МБ/с

PC2400 (DDR-300)

18,75 Гбит/с

2 400 МБ/с

PC2700 (DDR-333)

20,84 Гбит/с

2 667 МБ/с

PC3200 (DDR-400)

25,00 Гбит/с

3 200 МБ/с

PC2-3200 (DDR2-400)

25,00 Гбит/с

3 200 МБ/с

PC3500 (DDR-433)

27,00 Гбит/с

3 467 МБ/с

PC3700 (DDR-466)

29,16 Гбит/с

3 733 МБ/с

PC4000 (DDR500)

31,25 Гбит/с

4 000 МБ/с

PC2-4200 (DDR2-533)

33,33 Гбит/с

4 200 МБ/с

PC4300 (DDR533)

33,33 Гбит/с

4 267 МБ/с

PC2-5300 (DDR2-667)

41,40 Гбит/с

5 300 МБ/с

PC2-5400 (DDR2-675)

42,19 Гбит/с

5 400 МБ/с

PC5600 (DDR-700)

43,75 Гбит/с

5 600 МБ/с

PC2-5600 (DDR2-700)

43,75 Гбит/с

5 600 МБ/с

PC2-5700 (DDR2-711)

44,53 Гбит/с

5 700 МБ/с

PC2-6000 (DDR2-750)

46,88 Гбит/с

6 000 МБ/с

PC2-6400 (DDR2-800)

50,00 Гбит/с

6 400 МБ/с

PC3-6400 (DDR3-800)

50,00 Гбит/с

6 400 МБ/с

PC2-7100 (DDR2-888)

55,47 Гбит/с

7 100 МБ/с

PC2-7200 (DDR2-900)

56,25 Гбит/с

7 200 МБ/с

PC2-8000 (DDR2-1000)

62,50 Гбит/с

8 000 МБ/с

PC2-8500 (DDR2-1066)

66,40 Гбит/с

8 500 МБ/с

PC3-8500 (DDR3-1066)

66,66 Гбит/с

8 533 МБ/с

PC2-9200 (DDR2-1150)

71,88 Гбит/с

9 200 МБ/с

PC2-9600 (DDR2-1200)

75,00 Гбит/с

9 600 МБ/с

PC2-10400 (DDR2-1300)

81,25 Гбит/с

10 400 МБ/с

PC3-10600 (DDR3-1333)

83,33 Гбит/с

10 667 МБ/с

PC3-12800 (DDR3-1600)

100,00 Гбит/с

12 800 МБ/с

PC3-14400 (DDR3-1800)

112,50 Гбит/с

14 400 МБ/с

PC3-15000 (DDR3-1866)

117,19 Гбит/с

15 000 МБ/с

PC3-15200 (DDR3-1900)

118,75 Гбит/с

15 200 МБ/с

PC3-16000 (DDR3-2000)

125,00 Гбит/с

16 000 МБ/с

PC3-17000 (DDR3-2133)

133,33 Гбит/с

17 066 МБ/с

PC3-17600 (DDR3-2200)

137,50 Гбит/с

17 600 МБ/с

PC3-18400 (DDR3-2300)

143,75 Гбит/с

18 400 МБ/с

PC3-19200 (DDR3-2400)

150,00 Гбит/с

19 200 МБ/с

Контроллеры, основные функции и реализация.

Прямой доступ к памяти

Программный обмен. Система прерываний




Периферийные устройства ЭВМ -6ч


  • Дисковые устройства (HDD, FDD, CD,DVD)




  • Устройства ручного ввода (KB, digitizer, scanner, etc)




  • Устройства вывода (дисплей, принтер, плоттер и др.)






Дисковые устройства (HDD, FDD, CD,DVD)

HDD, CD, FDD

Дполотно 73вигатель вращается с постоянной скоростью, измеряемой в об/мин (rpm – rounds per minute). Чем выше скорость вращения, тем выше скорость обмена данными. При скорости 5400 IDE-13-16Mb/sec, SCSI – 80 Mb/sec. Но при возрастании скорости увеличивается t-ра корпуса и необходимы доп. средства теплоотвода. Скорость вращения современных HDD 5400 и 7200. Появились диски со скоростью вращения 1000.

Блок головок перемещается над поверхностью блинов с помощью серводвигателя.

Данные организованы на диске в цилиндрах, дорожках и секторах

Цилиндры – концентрические дорожки на дисках, расположенные одна над другой.

Дорожка разделяется на сектора.

Количество секторов на дорожке изначально было строго фиксировано (для дискет это 8, потом 9) независимо от того внешняя это дорожка или внутренняя. Соответственно плотность записи на внутренних дорожках была намного выше, чем на внешних. Современные HDD имеют различное количество секторов на дорожке

В SETUPе для каждого диска указывается его «геометрия»: т.е. количество головок, цилиндров и секторов. Но реальная геометрия, как правило не имеет ничего общего с указанной в BIOSе. Сначала это было сделано, чтобы позволить DOS видеть диски более 540 Мб(LBA mode позволяет в DOSе работать с дисками до 4Gb), а сейчас и количество секторов переменное, и активно используется дисковый кэш, так что реальную геометрию знает только схема управления, а ОС работает с некоторым виртуальным диском.

(трансляция адресов, ) ???



IDE и SCSI интерфейсы. Сейчас осталось фактически только 2 действующих интерфейса IDE(EIDE) и SCSI. Каждый контроллер EIDE имеет два канала (primary & secondary), к каждому из которых можно подключить по 2 устройства. С интерфейсом IDE выпускаются HDD, CD(DVD)-ROM, Iomega Zip, накопители на магнитной ленте.

Стандартная скорость обмена данными 16,6 Мбайт/сек, UDMA-33 – 33.3 Мбайт/сек, UDMA-66 - ???.

SCSI позволяет подключать до 7, Wide SCSI до 15, а многоканальные и большее кол-во устройств. На этом интерфейсе могут одновременно работать и быстрые (дисковые) устройства и медленные, такие как принтеры, сканеры и пр.

FDD – 5 и 3.5” объем

CD-ROM, CD-RW, DVD




Клавиатура


Клавиатура имеет постоянно присоединенный кабель, который подключается к разъему на задней панели системного блока. Этот четырехпроводный кабель содержит питание +5в, общий провод и две последовательные сигнальные линии.

Типы подключения:

DIN

PS/2


USB

Клавиатура содержит клавиши, разделенные на три основные группы. Центральная часть клавиатуры представляет собой стандартно расположенные телетайпные клавиши. В верхней части находятся 12 функциональных клавиш. Действие этих клавиш определяется программным обеспечением. В правой части клавиатуры находится 15-клавишная цифровая панель.

Интерфейс клавиатуры определен таким образом, что системное программное обеспечение имеет максимальную гибкость при определении различных действий с клавиатуры.

Мышь


Типы разъемов:

COM


PS/2

USB


ИК (инфракрасный порт)

Принтеры


матричные, струйные, лазерные

Принтер PC-подобных компьютеров обычно подключается к параллельному интерфейсу. Для подключения используется стандартный разъем Centronix. имеющий 36 контактных выходов. Современные принтеры стали более интеллектуальными и активно используют двусторонний обмен данными между ПК и принтером. Для этого используется модифицированный интерфейс Centronix, называемый Bitronix.

Современные принтеры имеют возможность подключения по USB-порту.

Плоттеры




1 Закон Мура в основной формулировке

2 Как всегда, первыми были военные: они использовали микропроцессоры в бортовых вычислителях в авиационной и подводной технике

3 Академик В.М.Глушков давал следующую спецификацию специалистов:

- схемотехник

- системный программист

- программист

- кодировщик

- оператор



4 Согласно ГОСТ 15971-90, вычислительная машина (ВМ, Computer) — совокупность технических средств, создающая возможность проведения обработки информации и получение результата в необходимой форме. Как правило, в состав ВМ входит и системное программное обеспечение

5 См статью «Первый ВЦ и его основатель»

6 Не следует путать с Троичный разряд.

Трит — логарифмическая единица измерения в теории информации, минимальная целая единица измерения информации источников с тремя равновероятными сообщениями. Энтропию в 1 трит имеет источник информации с тремя равновероятными состояниями. Применяется в теории информации.

1 трит равен log23 бит ≈ 1,585 бит.

По аналогии с понятием Байт существует понятие Трайт. Впервые термин использовался в ЭВМ троичной логики Сетунь-70, где он равнялся 6 тритам.




страница 1 ... страница 2 страница 3 страница 4


Смотрите также:





<< предыдущая страница        

скачать файл




 



 

 
 

 

 
   E-mail:
   © zaeto.ru, 2018